|
Problem. Compute
\[
\lim _{x \rightarrow 0} \frac{\sin \tan x-\tan \sin x}{\arcsin \arctan x-\arctan \arcsin x} .
\]
Solution. It is convenient to do the computation in the general form. Let
$f(x)=x+a x^3+b x^5+c x^7+o\left(x^7\right)$ and $\phi(x)=x+\alpha x^3+\beta x^5+\gamma x^7+o\left(x^7\right)$
be the Taylor expansions of two odd infinitely differentiable functions with the derivatives at $x=0$ equal to 1 . Then
\[
\begin{aligned}
&f(\phi(x)) \\
&= x+\alpha x^3+\beta x^5+\gamma x^7+a\left(x+\alpha x^3+\beta x^5\right)^3+b\left(x+\alpha x^3\right)^5+c x^7+o\left(x^7\right)\\
&=x+(a+\alpha) x^3+(b+3 a \alpha+\beta) x^5+\left(c+3 a \beta+3 a \alpha^2+5 b \alpha+\gamma\right) x^7+o\left(x^7\right)
\end{aligned}
\]
Since the coefficients at $x^3$ and $x^5$ are symmetric with respect to exchanging Latin and Greek letters, the expansion of $f(\phi(x))-\phi(f(x))$ starts only with $x^7$. This is a bad news, but the good news is that the coefficient at $x^7$ depends on the Taylor coefficients of $f$ and $\phi$ only up to order $x^5$ :
\[
f(\phi(x))-\phi(f(x))=[3 a \alpha(\alpha-a)+2(b \alpha-\beta a)] x^7+o\left(x^7\right) .
\]
On the other hand, if $\phi=f^{-1}(x)=x+A x^3+B x^5+o\left(x^5\right)$, then
\[
x=f\left(f^{-1}(x)\right)=x+(a+A) x^3+(b+3a A+B) x^5+o\left(x^5\right)
\]
i.e. $A=-a$, and $B=3 a^2-b$. Substituting into $3 a \alpha(\alpha-a)+2(b \alpha-\beta a)$ respectively: $-a$ for $a,-\alpha$ for $\alpha, 3 a^2-b$ for $b$, and $3 \alpha^2-\beta$ for $\beta$, we find:
\[
\begin{aligned}
&f^{-1}\left(\phi^{-1}(x)\right)-\phi^{-1}\left(f^{-1}(x)\right)\\
&= \left[3 a \alpha(a-\alpha)+2\left(a\left(3 \alpha^2-\beta\right)-\alpha\left(3 a^2-b\right)\right)\right] x^7+o\left(x^5\right) \\
&= [3 a \alpha(\alpha-a)+2(b \alpha-\beta a)] x^7+o\left(x^7\right) .
\end{aligned}
\]
Thus
\[
\lim _{x \rightarrow 0} \frac{f(\phi(x))-\phi(f(x))}{f^{-1}\left(\phi^{-1}(x)\right)-\phi^{-1}\left(f^{-1}(x)\right)}=1
\]
Could you explain (predict) this result without much computation? |
|