|
讲义《行列式入门》30. Binet–Cauchy 公式
或许, (方)阵的行列式与阵的积的定义都是较复杂的 (跟阵的转置、加、减、数乘等对比). 不过, 这二种较复杂的运算有着较不平凡的联系. 设 \(A\) 是一个 \(m \times n\) 阵, \(B\) 是一个 \(n \times m\) 阵. 根据阵的积的定义, \(BA\) 是一个 \(n\) 级阵, 故它有行列式.
Theorem 1 (Binet–Cauchy 公式). 设 \(A\), \(B\) 分别是 \(m \times n\), \(n \times m\) 阵.
(1) 若 \(n > m\), 则 \(\det {(BA)} = 0\). (2) 若 \(n \leq m\), 则
\begin{align*}
& \det {(BA)}
\\ = {} & \sum_{1 \leq j_1 < j_2 < \dots < j_n \leq m} {
\det {\left(
B\binom{1, 2, \dots, n}{j_1, j_2, \dots, j_n} \right)}
\det {\left(
A\binom{j_1, j_2, \dots, j_n}{1, 2, \dots, n} \right)}
}.
\end{align*}
特别地, 若 \(n = m\), 则适合条件 \(1 \leq j_1 < j_2 < \dots < j_n \leq m\) 的 \(j_1, j_2, \dots, j_n\) 只能是 \(1, 2, \dots, n\), 故
\begin{align*}
\det {(BA)} = {} & \det {\left(
B\binom{1, 2, \dots, n}{1, 2, \dots, n} \right)}
\det {\left(
A\binom{1, 2, \dots, n}{1, 2, \dots, n} \right)}
\\ = {} & \det {(B)} \det {(A)}.
\end{align*}
我举二个例, 助您理解, 此定理在说什么.
Example 1. 设
\begin{align*}
A = \begin{bmatrix}
1 & 3 & 5 \\ 2 & 4 & 6 \\
\end{bmatrix}, \quad B = \begin{bmatrix}
7 & 10 \\ 8 & 11 \\ 9 & 12 \\
\end{bmatrix}.
\end{align*}
不难算出,
\begin{align*}
AB = \begin{bmatrix}
76
& 103 \\
100 & 136 \\
\end{bmatrix}, \quad BA = \begin{bmatrix}
27 & 61 & 95
\\
30 & 68 & 106 \\ 33 & 75 & 117 \\
\end{bmatrix}.
\end{align*}
直接计算, 可知
\begin{align*}
\det {(AB)} = 76 \cdot 136 - 100 \cdot 103 = 36,
\end{align*}
而
\begin{align*}
\det {(BA)} = {} & \hphantom{{} + {}} 27 \cdot 68 \cdot 117 + 30 \cdot 75 \cdot 95 + 33 \cdot 61 \cdot 106 \\
&
- 27 \cdot 75 \cdot 106 - 30 \cdot 61 \cdot 117 - 33 \cdot 68 \cdot 95 \\ = {} & 0.
\end{align*}
或许, 上面的计算是较复杂的. 我们试用 Binet–Cauchy 公式, 再计算它们. 因为 \(A\), \(B\) 的尺寸分别是 \(2 \times 3\), \(3 \times 2\), 而 \(3 > 2\), 根据 (1), \(\det {(BA)} = 0\)
(注意到, \(BA\) 是 \(3\) 级阵).
因为 \(2 \leq 3\), 故, 根据 (2),
\begin{align*}
& \det {(AB)}
\\ = {} & \hphantom{{} + {}} \det {\left(A\binom{1,2}{1,2}\right)} \det {\left(B\binom{1,2}{1,2}\right)} + \det {\left(A\binom{1,2}{1,3}\right)} \det {\left(B\binom{1,3}{1,2}\right)} \\
&
+ \det {\left(A\binom{1,2}{2,3}\right)} \det {\left(B\binom{2,3}{1,2}\right)}.
\end{align*}
这里, 要注意到, 适合条件 “\(1 \leq j_1 < j_2 \leq 3\)” 的 \((j_1, j_2)\) 恰有三组: \((1, 2)\), \((1, 3)\), \((2, 3)\). 不难写出
\begin{align*}
& A\binom{1,2}{1,2}
= \begin{bmatrix} 1&3\\2&4\\ \end{bmatrix}, \quad B\binom{1,2}{1,2} = \begin{bmatrix} 7&10\\8&11\\ \end{bmatrix}, \\
& A\binom{1,2}{1,3}
= \begin{bmatrix} 1&5\\2&6\\ \end{bmatrix}, \quad B\binom{1,3}{1,2} = \begin{bmatrix} 7&10\\9&12\\ \end{bmatrix}, \\
& A\binom{1,2}{2,3}
= \begin{bmatrix} 3&5\\4&6\\ \end{bmatrix}, \quad B\binom{2,3}{1,2} = \begin{bmatrix} 8&11\\9&12\\ \end{bmatrix}.
\end{align*}
从而
\begin{align*}
\det {(AB)} = (-2) \cdot (-3) + (-4) \cdot (-6) + (-2) \cdot (-3) = 36.
\end{align*}
Example 2. 设
\begin{align*}
A = \begin{bmatrix}
2 & 5 \\ 3 & 7 \\
\end{bmatrix},
\quad B = \begin{bmatrix}
9 & 6 \\ 4 & 8 \\
\end{bmatrix}.
\end{align*}
不难算出
\begin{align*}
AB = \begin{bmatrix}
38 & 52 \\ 55 & 74 \\
\end{bmatrix},
\quad BA = \begin{bmatrix}
36 & 87 \\ 32 & 76 \\
\end{bmatrix}.
\end{align*}
可以看到, \(AB \neq BA\).
不过, \(\det {(AB)} = \det {(BA)}\). 一方面, 我们可直接验证:
\begin{align*}
& \det {(AB)} = 38 \cdot 74 - 55 \cdot 52 = -48, \\ & \det {(BA)} = 36 \cdot 76 - 32 \cdot 87 = -48.
\end{align*}
另一方面, Binet–Cauchy 公式指出,
\begin{align*}
\det {(AB)} = {} & \det {(A)} \det {(B)} \\ = {} & \det {(B)} \det {(A)} \\ = {} & \det {(BA)}.
\end{align*}
毕竟, 数的乘法是可换的.
为较流畅地论证公式, 我们需要三个新事实的帮助. 为证明这三个新事实的前二个, 我们需要一些老的公式.
Theorem 2. 设 \(A\) 是 \(n\) 级阵 (\(n \geq 1\)). 设 \(j_1\), \(j_2\), \(\dots\), \(j_n\) 是不超过 \(n\) 的正整数, 且互不相同. 则
\begin{align*}
& \det {(A)}
\\ = {} & \sum_{\substack{ 1 \leq i_1, i_2, \dots, i_n \leq n \\
i_1, i_2, \dots, i_n\,\text{
互不相同
}
}}
{s(i_1, i_2, \dots, i_n)\,
s(j_1, j_2, \dots, j_n)\, [A]_{i_1,j_1} [A]_{i_2,j_2} \dots [A]_{i_n,j_n}}.
\end{align*}
取 \(j_1\), \(j_2\), \(\dots\), \(j_n\) 为 \(1\), \(2\), \(\dots\), \(n\), 并注意到 \(s(1, 2, \dots, n) = 1\),
有
\begin{align*}
\det {(A)} = {} & \sum_{\substack{ 1 \leq i_1, i_2, \dots, i_n \leq n \\
i_1, i_2, \dots, i_n\,\text{
互不相同
}
}}
{s(i_1, i_2, \dots, i_n)\,
[A]_{i_1,1} [A]_{i_2,2} \dots [A]_{i_n,n}}.
\end{align*}
Theorem 3. 设 \(n\) 级阵 \(A\) 的列 \(1\), \(2\), \(\dots\), \(n\) 分别为 \(a_1\), \(a_2\), \(\dots\), \(a_n\). 设 \(\ell_1\), \(\ell_2\), \(\dots\), \(\ell_n\) 是不超过 \(n\) 的正整数, 且互不相同. 则
\begin{align*}
\det {[a_{\ell_1}, a_{\ell_2}, \dots, a_{\ell_n}]} = s(\ell_1, \ell_2, \dots, \ell_n) \det {(A)}.
\end{align*}
现在, 我要开始展现三个新事实了.
Theorem 4. 设 \(C\) 为 \(n \times m\) 阵, 且 \(m \geq n\). 设 \(C\) 的列 \(1\), \(2\), \(\dots\), \(m\) 分别为 \(c_1\), \(c_2\), \(\dots\), \(c_m\). 设 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 是不超过 \(m\) 的正整数, 且互不相同. 设 \(j_1\), \(j_2\), \(\dots\), \(j_n\) 是 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 的自然排列. 则
\begin{align*}
\det {[c_{k_1}, c_{k_2}, \dots, c_{k_n}]} = s(k_1, k_2, \dots, k_n) \det {[c_{j_1}, c_{j_2}, \dots, c_{j_n}]}.
\end{align*}
Proof. 设 \(k_t\) 在 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 的自然排列 \(j_1\), \(j_2\), \(\dots\), \(j_n\) 里的位置为 \(f(k_t)\) (\(t = 1\), \(2\), \(\dots\), \(n\)). 注意, \(f(j_t) = t\). 并且, 若 \(k_t < k_v\), 必有 \(f(k_t) < f(k_v)\). 反过来, 若 \(f(k_t) < f(k_v)\), 必有 \(k_t < k_v\). (我举一个简单的例助您理解. 设 \(m = 9\), \(n = 3\). 设 \(k_1\), \(k_2\), \(k_3\) 分别为 \(8\), \(9\), \(6\). 那么, \(k_1\), \(k_2\), \(k_3\) 的自然排列 \(j_1\), \(j_2\), \(j_3\) 是 \(6\), \(8\), \(9\). 故 \(f(k_1) = f(j_2) = f(8) = 2\), \(f(k_2) = f(j_3) = f(9) = 3\), \(f(k_3) = f(j_1) = f(6) = 1\).) 从而 \(\operatorname{sgn} {(k_v - k_t)}= \operatorname{sgn} {(f(k_v) - f(k_t))}\).
作阵 \(G = [c_{j_1}, c_{j_2}, \dots, c_{j_n}]\). 设 \(G\) 的列 \(1,2,\dots,n\) 分别是 \(g_1\), \(g_2\), \(\dots\), \(g_n\). 则
\begin{align*}
[c_{k_1}, c_{k_2}, \dots, c_{k_n}] = [g_{f(k_1)}, g_{f(k_2)}, \dots, g_{f(k_n)}].
\end{align*}
故
\begin{align*}
\det {[c_{k_1}, c_{k_2}, \dots, c_{k_n}]} = {} & \det {[g_{f(k_1)}, g_{f(k_2)}, \dots, g_{f(k_n)}]} \\ = {} & s(f(k_1), f(k_2), \dots, f(k_n)) \det {[g_1, g_2, \dots, g_n]} \\ = {} & s(k_1, k_2, \dots, k_n) \det {[c_{j_1}, c_{j_2}, \dots, c_{j_n}]}.
\end{align*}
Theorem 5. 设 \(D\) 为 \(m \times n\) 阵, 且 \(m \geq n\). 设 \(i_1\), \(i_2\), \(\dots\), \(i_n\) 是不超过 \(m\) 的正整数, 且 \(i_1 < i_2 < \dots < i_n\). 则
\begin{align*}
&
\det {\left(
D\binom{i_1, i_2, \dots, i_n}{1, 2, \dots, n} \right)}
\\ = {} & \sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
} \\
i_1, i_2, \dots, i_n\,\text{
的排列
}
}}
{s(k_1, k_2, \dots, k_n)\,
[D]_{k_1,1} [D]_{k_2,2} \dots [D]_{k_n,n}}.
\end{align*}
Proof. 设
\begin{align*}
H = D\binom{i_1, i_2, \dots, i_n}{1, 2, \dots, n}.
\end{align*}
不难看出, \([H]_{u,v} = [D]_{i_u,v}\).
记 \(f(i_t) = t\) (\(t = 1\), \(2\), \(\dots\), \(n\)). 设 \(k_1\), \(k_2\), \(\dots\),
\(k_n\) 是 \(i_1\), \(i_2\), \(\dots\), \(i_n\) 的一个排列.
那么, \(f(k_1)\), \(f(k_2)\),
\(\dots\), \(f(k_n)\) 一定是 \(1\), \(2\), \(\dots\), \(n\) 的一个排列. 反过来, 若 \(v_1\), \(v_2\), \(\dots\), \(v_n\) 是 \(1\), \(2\), \(\dots\), \(n\) 的一个排列, 则 \(i_{v_1}\), \(i_{v_2}\), \(\dots\), \(i_{v_n}\) 一定是 \(i_1\), \(i_2\), \(\dots\), \(i_n\) 的一个排列. 并且, 若 \(k_t < k_v\), 必有 \(f(k_t) < f(k_v)\). 反过来, 若 \(f(k_t) < f(k_v)\), 必有 \(k_t < k_v\). 从而 \(\operatorname{sgn} {(k_v - k_t)}= \operatorname{sgn} {(f(k_v) - f(k_t))}\). 故
\begin{align*}
&
\det {\left(
D\binom{i_1, i_2, \dots, i_n}{1, 2, \dots, n} \right)}
\\ = {} & \det {(H)} \\ = {} & \sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
} \\
i_1, i_2, \dots, i_n\,\text{
的排列
}
}}
{s(f(k_1), f(k_2), \dots, f(k_n))\,
[H]_{f(k_1),1} [H]_{f(k_2),2} \dots [H]_{f(k_n),n}}
\\ = {} & \sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
} \\
i_1, i_2, \dots, i_n\,\text{
的排列
}
}}
{s(k_1, k_2, \dots, k_n)\,
[D]_{k_1,1} [D]_{k_2,2} \dots [D]_{k_n,n}}.
\end{align*}
Theorem 6. 设 \(n \leq m\). 设数 \(f(k_1, k_2, \dots, k_n)\) (其中 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 取遍 \(1\), \(2\), \(\dots\), \(m\)) 适合: 若 \(k_p = k_q\) (\(1 \leq p < q \leq n\)), 则 \(f(k_1, k_2, \dots, k_n) = 0\). 那么
\begin{align*}
&
\sum_{1 \leq k_1, k_2, \dots, k_n \leq m} {f(k_1, k_2, \dots, k_n)} \\ = {} & \sum_{\substack{ 1 \leq k_1, k_2, \dots, k_n \leq m \\
k_1, k_2, \dots, k_n\,\text{
互不相同
}
}}
{f(k_1, k_2, \dots, k_n)} \\ = {} & \sum_{1 \leq j_1 < j_2 < \dots < j_n \leq m} {\sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
}
\\
j_1, j_2, \dots, j_n\,\text{
的排列
}
}}
{f(k_1, k_2, \dots, k_n)}}.
\end{align*}
Proof. 由 \(f\) 的性质可知, 前一个等式成立. 后一个等式也不难. 注意到, 欲从 \(m\) 个不同的数里有前后次序地选 \(n\) 个不同的数 \(k_1\), \(k_2\), \(\dots\), \(k_n\), 我们可以这样: 先从小到大地从这 \(m\) 个数里选 \(n\) 个不同的数 \(j_1\), \(j_2\), \(\dots\), \(j_n\), 再有前后次序地作这 \(n\) 个数的排列 \(k_1\), \(k_2\), \(\dots\), \(k_n\). 所以后一个等式也成立.
现在, 我们证明 Binet–Cauchy 公式.
Proof. 设 \(B\) 的列 \(1\), \(2\), \(\dots\), \(m\) 分别是 \(b_1\), \(b_2\), \(\dots\), \(b_m\). 设 \(A\) 的列 \(1\), \(2\), \(\dots\), \(n\) 分别是 \(a_1\), \(a_2\), \(\dots\), \(a_n\). 那么
\begin{align*}
BA = {} & [Ba_1, Ba_2, \dots, Ba_n] \\ = {} & \left[ \sum_{k_1 = 1}^{m} {[A]_{k_1,1} b_{k_1}}, \sum_{k_2 = 1}^{m} {[A]_{k_2,2} b_{k_2}}, \dots, \sum_{k_n = 1}^{m} {[A]_{k_n,n} b_{k_n}} \right].
\end{align*}
利用行列式的多线性, 有
\begin{align*}
& \det {(BA)}
\\ = {} & \det {\left[ \sum_{k_1 = 1}^{m} {[A]_{k_1,1} b_{k_1}}, \sum_{k_2 = 1}^{m} {[A]_{k_2,2} b_{k_2}}, \dots, \sum_{k_n = 1}^{m} {[A]_{k_n,n} b_{k_n}} \right]} \\ = {} & \sum_{k_1 = 1}^{m} {[A]_{k_1,1} \det {\left[ b_{k_1}, \sum_{k_2 = 1}^{m} {[A]_{k_2,2} b_{k_2}}, \dots, \sum_{k_n = 1}^{m} {[A]_{k_n,n} b_{k_n}} \right]}} \\ = {} & \sum_{k_1 = 1}^{m} { \sum_{k_2 = 1}^{m} { [A]_{k_1,1} [A]_{k_2,2} \det {\left[ b_{k_1}, b_{k_2}, \dots, \sum_{k_n = 1}^{m} {[A]_{k_n,n} b_{k_n}} \right]}}} \\ = {} & \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots \\ = {} & \sum_{1 \leq k_1, k_2, \dots, k_n \leq m} {[A]_{k_1,1} [A]_{k_2,2} \dots [A]_{k_n,n}
\det {[b_{k_1}, b_{k_2}, \dots, b_{k_n}]}}.
\end{align*}
记 \(f(k_1, k_2, \dots, k_n)= [A]_{k_1,1} [A]_{k_2,2} \dots [A]_{k_n,n}\det {[b_{k_1}, b_{k_2}, \dots, b_{k_n}]}.\)
根据行列式的交错性, 当 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 中有二个数相同时, \(f(k_1, k_2, \dots, k_n) = 0\).
(1) 若 \(n > m\), 则 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 中总是有二个相同 (抽屉原理). 所以,
每一项都是零. 故 \(\det {(BA)} = 0\).
(2) 若 \(n \leq m\), 那么 \(\det {(BA)}\) 等于
\begin{align*}
\sum_{1 \leq j_1 < j_2 < \dots < j_n \leq m} {\sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
} \\
j_1, j_2, \dots, j_n\,\text{
的排列
}
}}
{[A]_{k_1,1} [A]_{k_2,2} \dots [A]_{k_n,n}
\det {[b_{k_1}, b_{k_2}, \dots, b_{k_n}]}}}.
\end{align*}
因为 \(1 \leq j_1 < j_2 < \dots < j_n \leq m\), 且 \(k_1\), \(k_2\), \(\dots\), \(k_n\) 是 \(j_1\), \(j_2\), \(\dots\), \(j_n\) 的排列, 故
\begin{align*}
\det {[b_{k_1}, b_{k_2}, \dots, b_{k_n}]} = s(k_1, k_2, \dots, k_n) \det {[b_{j_1}, b_{j_2}, \dots, b_{j_n}]},
\end{align*}
从而 \(\det {(BA)}\) 等于
\begin{align*}
&
\sum_{1 \leq j_1 < j_2 < \dots < j_n \leq m} {\det {[b_{j_1}, b_{j_2}, \dots, b_{j_n}]}} \\
& \qquad \qquad \qquad
\cdot \sum_{\substack{ k_1, k_2, \dots, k_n\,\text{
是
} \\
j_1, j_2, \dots, j_n\,\text{
的排列
}
}}
{s(k_1, k_2, \dots, k_n)\,
[A]_{k_1,1} [A]_{k_2,2} \dots [A]_{k_n,n}}.
\end{align*}
注意到, 内层的求和即为
\begin{align*}
\det {\left(
A\binom{j_1, j_2, \dots, j_n}{1, 2, \dots, n} \right)}.
\end{align*}
再注意到, 因为 \(1 \leq j_1 < j_2 < \dots < j_n \leq m\), 故, 由子阵的定义,
\begin{align*}
[b_{j_1}, b_{j_2}, \dots, b_{j_n}] = B\binom{1, 2, \dots, n}{j_1, j_2, \dots, j_n}.
\end{align*}
从而
\begin{align*}
& \det {(BA)}
\\ = {} & \sum_{1 \leq j_1 < j_2 < \dots < j_n \leq m} {
\det {\left(
B\binom{1, 2, \dots, n}{j_1, j_2, \dots, j_n} \right)}
\det {\left(
A\binom{j_1, j_2, \dots, j_n}{1, 2, \dots, n} \right)}
}.
\end{align*} |
|