|
$n=2$ | $\pmatrix{1&0\\0&1},\pmatrix{1&0\\0&-1},\pmatrix{-1&0\\0&-1},\pmatrix{\cosθ&-\sinθ\\\sinθ&\cosθ}$
| $n=3$ | $\pmatrix{1&0&0\\0&1&0\\0&0&1},\pmatrix{1&0&0\\0&1&0\\0&0&-1},\pmatrix{1&0&0\\0&-1&0\\0&0&-1},\pmatrix{-1&0&0\\0&-1&0\\0&0&-1},$$\pmatrix{1&0&0\\0&\cosθ&-\sinθ\\0&\sinθ&\cosθ},\pmatrix{-1&0&0\\0&\cosθ&-\sinθ\\0&\sinθ&\cosθ}$ |
A002620: Quarter-squares: $a_n = \lfloor n/2\rfloor·\lceil n/2\rceil$. Equivalently, $a_n =\lfloor n^2/4\rfloor$.
a(n+2) is the number of distinct real spectra (eigenvalues repeated according to their multiplicity) for an orthogonal n X n matrix. The case of an empty spectrum list is logically counted as one of those possibilities, when it exists. Thus a(n+2) is the number of distinct reduced forms (on the real field, in orthonormal basis) for elements in O(n). - Christian Devanz, Feb 13 2019
decomposition of orthogonal operators as rotations and reflections
Orthogonal matrix#Canonical form
More broadly, the effect of any orthogonal matrix separates into independent actions on orthogonal two-dimensional subspaces. That is, if $Q$ is special orthogonal then one can always find an orthogonal matrix $P$, a (rotational) change of basis, that brings $Q$ into block diagonal form:
$$P^\mathrm{T}QP = \begin{bmatrix}
R_1 & & \\ & \ddots & \\ & & R_k
\end{bmatrix}\ (n\text{ even}),
\ P^\mathrm{T}QP = \begin{bmatrix}
R_1 & & & \\ & \ddots & & \\ & & R_k & \\ & & & 1
\end{bmatrix}\ (n\text{ odd}).$$where the matrices $R_1,\dots,R_k$ are $2 × 2$ rotation matrices, and with the remaining entries zero. Exceptionally, a rotation block may be diagonal, $±I$. Thus, negating one column if necessary, and noting that a $2 × 2$ reflection diagonalizes to a $+1$ and $−1$, any orthogonal matrix can be brought to the form
$$P^\mathrm{T}QP = \begin{bmatrix}
\begin{matrix}R_1 & & \\ & \ddots & \\ & & R_k\end{matrix} & 0 \\
0 & \begin{matrix}\pm 1 & & \\ & \ddots & \\ & & \pm 1\end{matrix} \\
\end{bmatrix},$$The matrices $R_1,⋯,R_k$ give conjugate pairs of eigenvalues lying on the unit circle in the complex plane; so this decomposition confirms that all eigenvalues have absolute value $1$. If $n$ is odd, there is at least one real eigenvalue, $+1$ or $−1$; for a $3 × 3$ rotation, the eigenvector associated with $+1$ is the rotation axis. |
|