找回密码
 快速注册
搜索
查看: 78|回复: 8

unit sphere compact ⇒ closed ball compact

[复制链接]

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65397
QQ

显示全部楼层

hbghlyj 发表于 2022-8-6 15:04 |阅读模式
本帖最后由 hbghlyj 于 2023-6-11 02:49 编辑 Let $(V,{\|\cdot\|})$ be a normed vector space whose unit sphere $S=\{v \in V:{\|v\|}=1\}$ is sequentially compact. Show that any closed ball $B=\{v \in V:{\|v\|}⩽R\}$ is sequentially compact. Show that $V$ is complete.

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-8-6 19:09
本帖最后由 Czhang271828 于 2022-8-7 11:26 编辑 Hint: The finite product topology space of sequentially compact metric spaces is also sequentially compact.

(Formal definition in topology) $(X,\tau)$ is sequentially compact if and only if every $\{x_n\}_{n\geq 1}\subset X$ has a convergent subsequence with limit in $X$. We say $x_n\to x_0$ in $(X,\tau)$ whenever each neighbourhood of $x_0$ contains $\{x_n\}_{n\geq N}$ for some $N\in \mathbb N$ ($N$ depends on the choice of neighbourhoods).

When $(X,\tau)$ is a metric space, we can also use $\varepsilon$ - $\delta$ language to restate the convergence.

Proof of the hint. Let $\{X_i\}_{i=1}^d$ be a family of seq compact metric space. For each $\{x_n=(x_n^1,\ldots, x_n^d)\}_{n\geq 1}\subset \prod_{i=1}^d X_i$, we shall prove that $\{x_n\}$ has an accumulation point in the product space.

There exists a subsequence $\{x_{n_k}\}$ s.t. $\{x_{n_k}^1\}$ is convergent in $X_1$. Similarly, one can also find a subsub...subsequence whose projection on each $X_i$ is convergent in $X_i$. Therefore, let $x^i_n\to x^i_0$ for  simplicity ($\forall i=1,\ldots, n$).

We claim that $x_0:=(x_0^1,\ldots,x_0^n)$ is a limit point of $\{x_n\}$. By definition of finite product topology, each open neighbourhood of $x_0$ contains some $\prod_{i=1}^d U_i$ ($U_i$ is an open neighbourhood of $x_0^i$ in $X_i$). There exists $\{N_i\}_{i=1}^d\subset \mathbb N$ s.t. $\{x^i_n\}_{n\geq N_i}\subset U_i$. As a result, $\{x_n\}_{n\geq \max_i N_i}\subset \prod_{i=1}^d U_i$.

One can also prove the compactness by Heine-Borel thm.
________________________

Solution.
$\forall \{x_n\}\subset B(0;R)$. If $\{x_n\}\subset B(0;R)$ has subsequence converging to $0$, then $0$ is a accumulation point of $\{x_n\}$. Otherwise, $\inf_{n\geq 1} \|x_n\|:=\delta >0$.

$\forall x\in B(0;R)\setminus B(0;\delta)$, denote $x=(\omega ,r)$, where $\omega \in S$ and $r\in [\delta,R]$. We define the metric $d'(x_m,x_n):=\sqrt{d_{\mathrm{arc}}(\omega_m-\omega_n)^2+(r_m-r_n)^2}$, where $d_{\mathrm{arc}}$ is the arc length on $S$.

One can verify:
(i) $d'$ is a well defined metric.
(ii) $\exists C_1,C_2>0$ (only depending on $\delta$ and $R$) s.t. $C_1\|\omega_p-\omega_q\|\leq d_{\mathrm{arc}}(\omega_p,\omega_q)\leq C_2\|\omega_p-\omega_q\|$. Therefore, $d_{\mathrm{arc}}$ is comparable to the metric induced by norm $\|\cdot \|$ on $S$.
(iii) $d'$ is comparable to the metric induced by norm $\|\cdot\|$ on $B(0;R)\setminus B(0;\delta)$.

Since $\{r_n\}_{n\geq 1}$ has a accumulation point on $[\delta,R]$, there exists a subsequence $\{x_{n_k}\}_{k\geq 1}$ s.t. $\lim_{k\to\infty}r_{n_k}$ exists. Since $S_0$ is also seq compact, there exists a subsubsequence $\{x_{n_{k_s}}\}_{s\geq 1}$ s.t. $\lim_{s\to\infty}\omega_{n_{k_s}}$ exists.

By (i) (iii) (iii), $x_{n_{k_s}}$ converges in norm $\|\cdot \|$ due to the convergence of $\omega_{n_{k_s}}$ and $r_{n_{k_s}}$. As a consequence, $B$ is seq compact.

点评

Indeed the compactness of S equals dim S<∞, whereas I prefer a constructional proof rather than equaling V to Rn directly.  发表于 2022-8-6 19:15
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65397
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-8-7 04:15
Hint: $X$ is seq compact, then $X\times \mathbb R$ is also seq compact (with appropriate norm/metric).

This looks similar to A2-metricspaces.pdf page 58:
Proposition 8.4.2. The product of two sequentially compact metric spaces is sequentially compact.

but $\Bbb R$ is not compact. (I am a little confused...Sorry if this proposition is irrelevant... )

点评

The formal definition of seq compactness is updated in 2#. The hint is substituted by Prop 8.4.2. from the note you provided.  发表于 2022-8-7 11:30

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65397
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-2 03:27


$\forall \{x_n\}\subset B(0;R).$ $r_n={‖x_n‖}$ is a sequence in $[0,R]$, so it has a subsequence $r'_n→r$. If $r=0$, then $x_n'\to0$; if $r\ne0$, suppose all $r'_n≠0$.
Let $θ'_n=\frac{x'_n}{r'_n}$, then $θ'_n∈S$, so it has a subsequence $θ''_n→θ$.
So $x''_n=r''_nθ''_n→rθ$. So $(x''_n)$ is a convergent subsequence of $(x_n)$.

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

abababa 发表于 2022-11-2 10:02
如果单位球面是列紧集,那么$V$一定是有限维空间,所以$V$完备。有限维空间里的闭球$B$全是完全有界集,加上$V$完备,根据豪斯多夫定理就得到$B$是列紧集。

3149

主题

8387

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65397
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2023-1-11 21:07
abababa 发表于 2022-11-2 03:02
如果单位球面是列紧集,那么$V$一定是有限维空间...

相关帖子 compactness of closed unit ball in normed spaces

abababa 发表于 2022-11-2 03:02
有限维空间里的闭球$B$全是完全有界集,加上$V$完备,根据豪斯多夫定理就得到$B$是列紧

@abababa “豪斯多夫定理”是指compact ⇔ complete and totally bounded
还是指Hausdorff 空间
我觉得这里应该是使用Heine-Borel theorem
For a subset S of Euclidean space Rⁿ, S is closed and bounded ⇔ S is compact.

413

主题

1558

回帖

1万

积分

积分
11498

显示全部楼层

abababa 发表于 2023-1-16 21:17
hbghlyj 发表于 2023-1-11 21:07
相关帖子 compactness of closed unit ball in normed spaces

豪斯多夫定理:给定距离空间$X$中的集合$M$,若$M$是列紧集则$M$也是完全有界集,若$M$是完全有界集且$X$完备,则$M$也是列紧集。
而由$X$中的单位球面是列紧集推出$X$是有限维赋范空间,本身就用到了构造。

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 18:25

Powered by Discuz!

× 快速回复 返回顶部 返回列表