|
complex.pdf page41
Theorem 7.2. Suppose that $U ⊆ C$ is an open subset and let $T ⊆ U$ be a triangle whose interior is entirely contained in $U$. Then if $f : U → C$ is holomorphic we have$$\int_{T} f(z)\mathrm{\ d}z=0$$
Proof. The proof proceeds using a version of the "divide and conquer" strategy one uses to prove the Bolzano-Weierstrass theorem. Suppose for the sake of contradiction that $\int_T f(z)\mathrm{\ d}z \neq 0$, and let $I=\left|\int_T f(z)\mathrm{\ d}z\right|>0$. We build a sequence of smaller and smaller triangles $T^n$ around which the integral of $f$ is not too small, as follows: Let $T^0=T$, and suppose that we have constructed $T^i$ for $0 \leq i< k$. Then take the triangle $T^{k-1}$ and join the midpoints of the edges to form four smaller triangles, which we will denote $S_i(1 \leq i \leq 4)$.
%20at%20(3,-13.9)%20%7B%7D;%20%5Cnode%20(v2)%20at%20(-10.7,-22.3)%20%7B%7D;%20%5Cnode%20(v3)%20at%20(10.8,-24.1)%20%7B%7D;%20%5Cdraw%20(v1)%20--%20(v2)%20--%20(v3)%20--%20(v1);%20%5Cnode%20(v4)%20at%20(-3.8,-18.1)%20%7B%7D;%20%5Cnode%20(v5)%20at%20(1.2,-23.4)%20%7B%7D;%20%5Cnode%20(v6)%20at%20(7.1,-19.1)%20%7B%7D;%20%5Cdraw%20(v4)%20--%20(v5)%20--%20(v6)%20--%20(v4);%20%5Cdraw%5Bblue,-latex%5D(-8.9,-23)%20--(-1.4,-23.6);%20%5Cdraw%5Bblue,-latex%5D(3.4,-24.1)--(9.4,-24.6);%20%5Cdraw%5Bblue,-latex%5D(11,-23.2)--(8.1,-19.7);%20%5Cdraw%5Bblue,-latex%5D(7,-18.3)--(3.7,-14);%20%5Cdraw%5Bblue,-latex%5D(1.3,-14.4)--(-2.6,-16.8);%20%5Cdraw%5Bblue,-latex%5D(-4.9,-17.9)--(-9.2,-20.7);%20%5Cnode%20at%20(-5.9,-15.6)%20%7B%24T%24%7D;%20%5Cdraw%5Bblue,-latex%5D(-0.2,-22.3)--(-2.6,-19.9);%20%5Cdraw%5Bblue,-latex%5D(5.6,-20.8)--(3,-22.6);%20%5Cdraw%5Bblue,-latex%5D(-0.3,-18.1)--(4.6,-18.4);%20%5Cdraw%5Bred,-latex%5D(-2.1,-19.2)--(0.4,-21.8);%20%5Cdraw%5Bred,-latex%5D(2.6,-21.9)--(4.8,-20.2);%20%5Cdraw%5Bred,-latex%5D(4.5,-19.3)--(-0.5,-18.9);%20%5Cnode%20at%20(1.9,-20.4)%20%7B%24S_4%24%7D;%20%5Cnode%20at%20(-5.1,-21.3)%20%7B%24S_2%24%7D;%20%5Cnode%20at%20(6.7,-22.4)%20%7B%24S_3%24%7D;%20%5Cnode%20at%20(2.3,-16.6)%20%7B%24S_1%24%7D;%20%5Cend%7Btikzpicture%7D) Figure 2
Then we have $\int_{T^{k-1}} f(z)\mathrm{\ d}z=\sum_{i=1}^4 \int_{S_i} f(z)\mathrm{\ d}z$, since the integrals around the interior edges cancel (see Figure 2). In particular, we must have
\[
I_k=\left|\int_{T^{k-1}} f(z)\mathrm{\ d}z\right| \leq \sum_{i=1}^4\left|\int_{S_i} f(z)\mathrm{\ d}z\right|
\]
so that for some $i$ we must have $\left|\int_{S_i} f(z)\mathrm{\ d}z\right| \geq I_{k-1} / 4$. Set $T^k$ to be this triangle $S_i$. Then by induction we see that $\ell\left(T^k\right)=2^{-k} \ell(T)$ while $I_k \geq4^{-k} I$
Now let $\mathcal{T}$ be the solid triangle with boundary $T$ and similarly let $\mathcal{T}^k$ be the solid triangle with boundary $T^k$. Then we see that $\operatorname{diam}\left(\mathcal{T}^k\right)=2^{-k} \operatorname{diam}(\mathcal{T}) \rightarrow 0$, and the sets $\mathcal{T}^k$ are clearly nested. It follows from Lemma 205 that there is a unique point $z_0$ which lies in every $\mathcal{T}^k$. Now by assumption $f$ is holomorphic at $z_0$, so we have
\[
f(z)=f\left(z_0\right)+f^{\prime}\left(z_0\right)\left(z-z_0\right)+\left(z-z_0\right) \psi(z),
\]
where $\psi(z) \rightarrow 0=\psi\left(z_0\right)$ as $z \rightarrow z_0$. Note that $\psi$ is continuous and hence integrable on all of $U$. Now since the linear function $z \mapsto f^{\prime}\left(z_0\right) z+f\left(z_0\right)$ clearly has a primitive, it follows from Theorem 5.19
\[
\int_{T^k} f(z)\mathrm{\ d}z=\int_{T^k}\left(z-z_0\right) \psi(z)\mathrm{\ d}z
\]
Now since $z_0$ lies in $\mathcal{T}^k$ and $z$ is on the boundary $T^k$ of $\mathcal{T}^k$, we see that $\left|z-z_0\right| \leq \operatorname{diam}\left(\mathcal{T}^k\right)=2^{-k} \operatorname{diam}(T)$. Thus if we set $\eta_k=\sup _{z \in T^k}|\psi(z)|$, it follows by the estimation lemma that\begin{aligned}
I_k=\left|\int_{T^k}\left(z-z_0\right) \psi(z)\mathrm{\ d}z\right| & \leq \eta_k \cdot \operatorname{diam}\left(T^k\right) \cdot\ell\left(T^k\right) \\
&=4^{-k} \eta_k \cdot \operatorname{diam}(T) \cdot \ell(T) .
\end{aligned}But since $\psi(z) \rightarrow 0$ as $z \rightarrow z_0$, it follows $\eta_k \rightarrow 0$ as $k \rightarrow \infty$, and hence $4^k I_k \rightarrow 0$ as $k \rightarrow \infty$. On the other hand, by construction we have $4^k I_k \geq$ $I>0$, thus we have a contradiction as required. |
|