Forgot password?
 Create new account
View 99|Reply 1

Using conformal maps to solve the Dirichlet problem on $U=\{z:\text{Im}z≥0\}$

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

hbghlyj Posted at 2022-10-4 14:34:12 |Read mode
1.$U=\{z:\operatorname{Im}z≥0\},\quad u(x, 0)=0$ when $x>0, \quad u(x, 0)=1$ when $x<0$.
2.$U=\{z:\operatorname{Im}z≥0\},\quad u(x, 0)=0$ when $\abs{x}>1, \quad u(x, 0)=1$ when $\abs{x}< 1$.

To find a conformal map $T$, transform a solution of your second Dirichlet problem to a solution of your first problem.
提问者原文:
I presume there is some way to use a conformal map sending the positive real axis to the real numbers with $|x| > 1$ and the negative to those with $|x|<1$.

这里的回答:
考虑Möbius transformation
$$T(z) = \frac{1+z}{1-z}$$
把$1$映射到$∞$, 把$-1$映射到$0$,
把$-1<z<1$映射到$z>0$, 把$z<-1\vee z>1$映射到$z<0$.
对于$U$的余下部分, 对$x,y∈\Bbb R$,
$$\operatorname{Im}T(x+yi)=\frac{2y}{(1-x)^2+y^2}$$
当$y>0$时, $\operatorname{Im}T(x+yi)>0$, 所以$T(U)=U$. [最后这步也可以用$ad-bc > 0$判断,省得展开计算.]

3151

Threads

8499

Posts

610K

Credits

Credits
66225
QQ

Show all posts

 Author| hbghlyj Posted at 2022-10-4 20:46:36

手机版Mobile version|Leisure Math Forum

2025-4-21 21:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list