Forgot password
 Register account
View 254|Reply 2

Schwarz and Poisson formulas

[Copy link]

3208

Threads

7846

Posts

51

Reputation

Show all posts

hbghlyj posted 2022-10-4 21:54 |Read mode
Last edited by hbghlyj 2022-11-10 21:04Schwarz and Poisson formulas - planetmath
Schwarz integral formula - Wikipedia
Deriving the Poisson Integral Formula from the Cauchy Integral Formula
complex.pdf(page 83 bottom, 84 top)
Lemma 12.20. If $u$ is harmonic on $B(0, r)$ for $r>1$ then for all $w \in B(0,1)$ we have
\[
u(w)=\frac{1}{2 \pi} \int_0^{2 \pi}u\left(e^{i \theta}\right) \frac{1-|w|^2}{\left|e^{i \theta}-w\right|^2} d \theta=\frac{1}{2 \pi} \int_0^{2 \pi} u\left(e^{i \theta}\right) \Re\left(\frac{e^{i \theta}+w}{e^{i \theta}-w}\right) d \theta .
\]
Proof. Take, as before, $f(z)$ holomorphic with $\Re(f)=u$ on $B(0, r)$. Then letting $\gamma$ be a parametrization of the positively oriented unit circle we have
\[
f(w)=\frac{1}{2 \pi i} \int_\gamma \frac{f(z) d z}{z-w}-\frac{1}{2 \pi i} \int_\gamma \frac{f(z) d z}{z-\bar{w}^{-1}}
\]
where the first term is $f(w)$ by the integral formula and the second term is zero because $f(z) /\left(z-\bar{w}^{-1}\right)$ is holomorphic inside all of $B(0,1)$. Gathering the terms, this becomes
\[
f(w)=\frac{1}{2 \pi} \int_\gamma f(z) \frac{1-|w|^2}{|z-w|^2} \frac{d z}{i z}=\frac{1}{2 \pi} \int_0^{2 \pi} f\left(e^{i \theta}\right) \frac{1-|w|^2}{\left|e^{i \theta}-w\right|^2} d \theta .
\]
The advantage of this last form is that the real and imaginary parts are now easy to extract, and we see that
\[
u(w)=\int_0^{2 \pi} u\left(e^{i \theta}\right) \frac{1-|w|^2}{\left|e^{i \theta}-w\right|^2} d \theta .
\]
Finally for the second integral expression note that if $|z|=1$ then
\[
\frac{z+w}{z-w}=\frac{(z+w)(\bar{z}-\bar{w})}{|z-w|^2}=\frac{1-|w|^2+(\bar{z} w-z \bar{w})}{|z-w|^2} .
\]
from which one readily sees the real part agrees with the corresponding factor in our first expression.

3208

Threads

7846

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2022-10-4 22:07
如下图,标红色的$f$应为$u$
Screenshot 2022-10-04 at 15-04-50 complex.pdf.png
如下图,标蓝色的$z$应为$w$
Screenshot 2022-10-04 at 16-11-51 complex.pdf.png

3208

Threads

7846

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2022-10-4 22:24
\[
f(w)=\frac{1}{2 \pi i} \int_\gamma \frac{f(z) d z}{z-w}-\frac{1}{2 \pi i} \int_\gamma \frac{f(z) d z}{z-\bar{w}^{-1}}
\]
Gathering the terms, this becomes
\[
f(w)=\frac{1}{2 \pi} \int_\gamma f(z) \frac{1-|w|^2}{|z-w|^2} \frac{d z}{i z}
\]
中间的过程:
\[
\frac{1}{z-w}-\frac{1}{z-\bar{w}^{-1}}=\frac{1-w\bar{w}}{(z-w) \left(z^{-1}-\bar{w}\right) z}
\]

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-12 15:18 GMT+8

Powered by Discuz!

Processed in 0.024292 seconds, 26 queries