|
Norm inequalities
\[
\|x\|_{\infty} \leq\|x\|_2 \leq \sqrt{n}\|x\|_{\infty}
\]
Pf.
The left hand side is easy
\[
\|x\|_{\infty}=\max _{1 \leq j \leq n}\left\{x_1, x_2, \ldots, x_n\right\}=\sqrt{\left(\max _{1 \leq j \leq n}\left\{x_1, x_2, \ldots, x_n\right\}\right)^2} \leq \sqrt{\sum_{i=1}^n\left|x_i\right|^2}
\]
For the right hand side
\[
n\|x\|_{\infty}^2=n\left(\max _{1 \leq j \leq n}\left\{x_1, x_2, \ldots, x_n\right\}\right)^2=\sum_{i=1}^n\left(\max _{1 \leq j \leq n}\left\{x_1, x_2, \ldots, x_n\right\}\right)^2 \geq \sum_{i=1}^n\left|x_i\right|^2=\|x\|_2^2 \geq 0
\]
Thus, taking the square-root
\[
\sqrt{n}\|x\|_{\infty} \geq\|x\|_2
\]
|
|