找回密码
 快速注册
搜索
查看: 28|回复: 3

Cayley–Hamilton定理的证明的疑问

[复制链接]

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

hbghlyj 发表于 2022-10-29 00:59 |阅读模式
本帖最后由 hbghlyj 于 2022-10-29 12:16 编辑 我对Cayley–Hamilton_定理的这个证明有疑问:
记 $B (x) = x I - A$, 并视之为 $R[x]$ 上的矩阵.
记 $\widetilde{B} (x)$ 为 $B (x)$ 的伴随矩阵, 从而
\[
        B (x) \, \widetilde{B} (x) =
        \widetilde{B} (x) \, B (x) =
        p (x) \, I_n ,
\]
其中 $I_n$ 为 $n \times n$ 单位矩阵.
对任何列向量 $u (x) = u_0 + x u_1 + \cdots + x^m u_m \in R[x]^n$,
其中每个 $u_i \in R^n$, 我们记
\[
        u (x) \, |_{x = A} =
        u_0 + A u_1 + \cdots + A^m u_m.
\]
则对任何列向量 $v \in R^n$, 有
\begin{align*}
        p (A) \, v
        & = p (x) \, v \, |_{x = A} \\
        & = \widetilde{B} (x) \, B (x) \, v \, |_{x = A} \\
        & = \widetilde{B} (x) \, (x v - A v) \, |_{x = A} \\
        & = 0.
\end{align*}
因此, $p (A)$ 必为零矩阵.

这里的恒等式$p(x)I=\widetilde{B} (x)  B (x)$是假定了乘法交换的,但是代入一个矩阵就不一定成立了.(见A proof using polynomials with matrix coefficients)
令$A=\pmatrix{a&b\\c&d}$,
把$A$换成其它的矩阵$M=\pmatrix{u&v\\s&t}$,具体验证一下这个等式:
\begin{align*}
\tilde B(x)B (x) v|_{x=M}&=(M-A)(M-\tilde A)\\
&=
\left(
\begin{array}{cc}
a d-a u-b c-b s+c v-d u+s v+u^2 & -2 a v-b t+b u+t v+u v \\
c t-c u-2 d s+s t+s u & a d-a t-b c+b s-c v-d t+s v+t^2 \\
\end{array}
\right)
\end{align*}
另一方面
\begin{align*}p(M)&=(ad-b c ) I- (a + d) M + M^2\\
&=\pmatrix{
a d-a u-b c-d u+s v+u^2 & -a v-d v+t v+u v \\
-a s-d s+s t+s u & a d-a t-b c-d t+s v+t^2}
\end{align*}

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-10-29 19:17
讨论页举了具体例子

48

主题

992

回帖

1万

积分

积分
14981
QQ

显示全部楼层

Czhang271828 发表于 2022-10-31 18:47
证明里一直在玩 $A$ 的多项式吧, 其实没有出现第二"种"矩阵.
一种便于理解的方式是将整个证明放在有理多项式域 $\mathbb F(x)$ 上的商空间 $\mathbb F(x)/ (m_A(x))$ 上. 然后把 $x$ 看成 $A$ 就可以了.
无钱佮歹看、无样佮歹生、无汉草佮无文采、无学历佮无能力、无高度无速度无力度共闲无代志。(闽南话)
口号:疼惜生命,远离内卷。

3147

主题

8381

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65357
QQ

显示全部楼层

 楼主| hbghlyj 发表于 2022-11-1 02:20


LaTeX to HTML with lwarp
MA20216

3.5 The Cayley–Hamilton theorem

  • Theorem 3.12 (Cayley–Hamilton Theorem). Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \).

    Then \(\Delta _{\phi }(\phi )=0\).

    Equivalently, for any \(A\in M_n(\F )\), \(\Delta _A(A)=0\).

  • Proof of Theorem 3.12. We will prove the matrix version. So let \(A\in M_n(\F )\) and write

    \begin{equation*} \Delta _{A}=a_0+\dots +a_nx^n. \end{equation*}

    Thus, our mission is to show that

    \begin{equation*} a_0I_n+a_1A+\dots +a_nA^n=0. \end{equation*}

    The key is the adjugate formula:

    \begin{equation} \label {eq:9} \mathrm {adj}(A-xI_{n})(A-xI_{n})=\det (A-xI_{n})I_{n}. \end{equation}

    Each entry of \(\mathrm {adj}(A-xI_n)\) is a polynomial in \(x\) of degree at most \(n-1\) so we write

    \begin{equation*} \mathrm {adj}(A-xI_n)=B_0+B_1x+\dots +B_{n-1}x^{n-1}, \end{equation*}

    with each \(B_k\in M_n(\F )\). Substitute this into \eqref{eq:9} to get

    \begin{equation*} (B_0+B_1x+\dots +B_{n-1}x^{n-1})(A-xI)=(a_0+\dots +a_nx^n)I_n \end{equation*}

    and compare coefficients of \(x^{k}\) to get

    \begin{equation} \label {eq:10} B_kA-B_{k-1}=a_kI_{n}, \end{equation}

    for \(0\leq k\leq n\), where we have set \(B_{-1}=B_n=0\in M_n(\F )\).

    Multiply \eqref{eq:10} by \(A^k\) on the right to get

    \begin{equation*} B_kA^{k+1}-B_{k-1}A^k=a_kA^k \end{equation*}

    and sum:

    \begin{equation*} \Delta _{A}(A)=\sum _{k=0}^na_kA^k=\sum _{k=0}^n(B_kA^{k+1}-B_{k-1}A^k)=B_nA^{n+1}-B_{-1}=0 \end{equation*}

    because nearly all terms in the penultimate sum cancel.  □

  • Corollary 3.13. Let \(\phi \in L(V)\) be a linear operator on a finite-dimensional vector space over a field \(\F \).

    • (1) \(m_{\phi }\) divides \(\Delta _{\phi }\). Equivalently, \(m_A\) divides \(\Delta _A\), for any \(A\in M_n(\F )\).

    • (2) The roots of \(m_{\phi }\) are exactly the eigenvalues of \(\phi \).

  • Proof. By Theorem 3.12, \(\Delta _{\phi }(\phi )=0\) so \(m_{\phi }\) divides \(\Delta _{\phi }\) by Proposition 3.7. As a result, any root of \(m_{\phi }\) is a root of \(\Delta _{\phi }\) and so an eigenvalue. Conversely, any eigenvalue is a root of \(m_{\phi }\) by Corollary 3.11.  □

Let us summarise the situation when \(\F =\C \) so that any polynomial is a product of linear factors. So let \(\phi \in L(V)\) be a linear operator on a finite-dimensional complex vector space with distinct eigenvalues \(\lst \lambda 1k\). Then

\begin{align*} \Delta _{\phi }&=\pm \prod _{i=1}^k(x-\lambda _i)^{r_i}\\ m_{\phi }&=\prod _{i=1}^k(x-\lambda _i)^{s_i}, \end{align*} where \(r_i=\am (\lambda _i)\) and \(\bw 1{s_i}{r_i}\), for \(\bw 1ik\).

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 21:12

Powered by Discuz!

× 快速回复 返回顶部 返回列表