For a sample of AC algebra, the following is offered: Let A = (R2, xy) be the real plane with quadratic form xy. Further, let A be equipped with component-wise addition and multiplication, making it a real algebra. Denote N(x,y) = xy in this case. Then
$\displaystyle N(x_{1},y_{1})N(x_{2},y_{2})=(x_{1}y_{1})(x_{2}y_{2})=x_{1}x_{2}y_{1}y_{2}=N((x_{1},y_{1})(x_{2},y_{2})).$
Thus N is said to compose over the multiplication in A, and A might be called a composition algebra. However, in this text, AC algebras have an involution called a conjugation, written x*, used to define N by N(x) = x x*. Nevertheless, the algebra A
constructed above is very closely related to split-binarions described
in the next chapter. The split-binarions are a normalized form of A,
where the multiplicative identity is a unit distance from the origin,
and it has some formal correspondences with the complex field C. In A, the quadratic form can be interpreted as a weight, so that a transformation leaving it invariant is an isobaric transformation, a name used in 1999 by Peter Olver (Classical Invariant Theory, page 217) to describe a squeeze mapping.
|