回11#:
这种线共有三条,两条跟 BD 垂直,一条跟 EF 垂直
完全四边形ABCDEF外切于 ⊙ I, AC交BD于O, ⊙ I切AB,BC,CD,DA于P,Q,R,S,
⊙ I1, I2为ΔABC, ACD内切圆, ⊙ I1切BC于Q′, ⊙ I2切CD于S′,则
(1) ⊙ I1, I2外切,QQ′ = RR′.
(2)OI⊥EF
(3)$\frac{BO}{DO} = \frac{\tan\frac{\angle ADC}{2}}{\tan\frac{\angle ABC}{2}} = \sqrt{\frac{(AB + BC)^{2} - AC^{2}}{(CD + AD)^{2} - AC^{2}}}$
(4)OI平分I1I2
证明:(1)∵ABCD为圆外切四边形,∴BC-AB=CD-AD,$\therefore\frac{AC + BC - AB}{2} = \frac{AC + CD - AD}{2},\therefore \odot I_{1},I_{2}$外切,设切点为T,CQ′ = CT = CR′, CQ = CR,∴QQ′ = RR′.
(2)∵E, F为PR, QS对于⊙I的极线,∴ EF为O的极线,∴ OI⊥EF.
(3)由牛顿定理,$\frac{BO}{DO} = \frac{BQ}{DQ} = \frac{\frac{IQ}{\tan\frac{\angle ABC}{2}}}{\frac{IR}{\tan\frac{\angle ADC}{2}}} = \frac{\tan\frac{\angle ADC}{2}}{\tan\frac{\angle ABC}{2}} = \frac{\sqrt{\frac{(AB + BC)^{2} - AC^{2}}{AC^{2} - (AB - BC)^{2}}}}{\sqrt{\frac{(CD + AD)^{2} - AC^{2}}{AC^{2} - (CD - AD)^{2}}}} = \sqrt{\frac{(AB + BC)^{2} - AC^{2}}{(CD + AD)^{2} - AC^{2}}}$
或者,以 ⊙ I为单位圆建立复平面,设P,Q,R,S对应复数为p,q,r,s,
$$\frac{BO}{DO} = \frac{S_{ABC}}{S_{ADC}} = \frac{\left| \begin{matrix}
1 & 1 & 1 \\
\frac{2}{p + r} & \frac{2}{p + q} & \frac{2}{q + s} \\
\frac{2pr}{p + r} & \frac{2pq}{p + q} & \frac{2qs}{q + s} \\
\end{matrix} \right|}{\left| \begin{matrix}
1 & 1 & 1 \\
\frac{2}{p + r} & \frac{2}{r + s} & \frac{2}{q + s} \\
\frac{2pr}{p + r} & \frac{2rs}{r + s} & \frac{2qs}{q + s} \\
\end{matrix} \right|} = \frac{\frac{r + s}{r - s}}{\frac{p + q}{p - q}} = \frac{\tan\frac{\angle ADC}{2}}{\tan\frac{\angle ABC}{2}}$$
(4)由于BI1I, DI3I共线,就有$\frac{S_{OII_{1}}}{S_{OII_{2}}} = \frac{S_{OII_{1}}}{S_{OIB}} \cdot \frac{S_{OID}}{S_{OII_{2}}} \cdot \frac{S_{OIB}}{S_{OID}} = \frac{II_{1}}{IB} \cdot \frac{ID}{II_{2}} \cdot \frac{OB}{OD} = \frac{r - r_{1}}{r - r_{3}} \cdot \frac{\tan\frac{\angle ADC}{2}}{\tan\frac{\angle ABC}{2}} = \frac{QQ^{'}}{RR^{'}} = 1.$ |