Forgot password
 Register account
View 13|Reply 1

[函数] 一个函数极值点的等价定理证明

[Copy link]

206

Threads

263

Posts

1

Reputation

Show all posts

hjfmhh posted 2025-7-19 11:29 |Read mode
定理:(i)若 $x_0 \in[a, b]$,$f'(x_0)=0$ 且 $f''(x_0)<0$,则 $y=f(x)$ 在 $x_0$ 处取得极大值
(ii)若 $x_0 \in[a, b]$,$f'(x_0)=0$ 且 $f''(x_0)>0$,则 $y=f(x)$ 在 $x_0$ 处取得极小值
逆定理(i)若 $y=f(x)$ 在 $x_0$ 处取得极大值,则 $f'(x_0)=0$ 且 $f''(x_0)<0$
(ii)若 $y=f(x)$ 在 $x_0$ 处取得极小值,则 $f'(x_0)=0$ 且 $f''(x_0)>0$
这两个定理怎么证明?是不是对于可导函数两个定理都成立?

0

Threads

6

Posts

1

Reputation

Show all posts

老司機 posted 2025-7-19 11:56 from mobile
没有逆定理的,反例如y=x^4

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-19 19:36 GMT+8

Powered by Discuz!

Processed in 0.015186 seconds, 41 queries