找回密码
 快速注册
搜索
查看: 2559|回复: 8

[不等式] (z)一个自然对数不等式

[复制链接]

443

主题

1519

回帖

1万

积分

积分
11660

显示全部楼层

realnumber 发表于 2014-3-15 18:56 |阅读模式
江苏南京冯加明(12-----96)  18:36:40
本题除了加权琴生不等式,还可以怎么证?
QQ图片20140310232831.jpg

730

主题

1万

回帖

9万

积分

积分
93623
QQ

显示全部楼层

kuing 发表于 2014-3-15 19:12
\begin{align*}
x\ln \frac xa+y\ln \frac yb\geqslant (x+y)\ln \frac{x+y}{a+b} &\iff \frac{x^xy^y}{a^xb^y}\geqslant \left( \frac{x+y}{a+b} \right)^{x+y} \\
&\iff \frac{(xy)^{x+y}}{(ay)^x(bx)^y}\geqslant \left( \frac{x+y}{a+b} \right)^{x+y} \\
&\iff \left( \frac{xy(a+b)}{x+y} \right)^{x+y}\geqslant (ay)^x(bx)^y \\
&\iff \frac x{x+y}ay+\frac y{x+y}bx\geqslant (ay)^{x/(x+y)}(bx)^{y/(x+y)},
\end{align*}
令 $x/(x+y)=\lambda\in(0,1)$, $ay=A$, $bx=B$,上式即
\[\lambda A+(1-\lambda)B\geqslant A^\lambda B^{1-\lambda} ,\]
也就是加权均值不等式了,导数神马的随便证……

730

主题

1万

回帖

9万

积分

积分
93623
QQ

显示全部楼层

kuing 发表于 2014-3-15 19:22
加权均值能变成这么有型的对数不等式,也算是命题者的本事……

108

主题

2372

回帖

1万

积分

积分
13374

显示全部楼层

其妙 发表于 2014-3-15 20:27
这不是young不等式吗?

443

主题

1519

回帖

1万

积分

积分
11660

显示全部楼层

 楼主| realnumber 发表于 2014-3-15 20:50
回复 4# 其妙
QQ图片20140310232831.jpg 换元一样

又,kk威武~~~~

730

主题

1万

回帖

9万

积分

积分
93623
QQ

显示全部楼层

kuing 发表于 2014-3-15 20:55
名称没所谓,都是一样的东西

108

主题

2372

回帖

1万

积分

积分
13374

显示全部楼层

其妙 发表于 2014-3-15 21:42
名称没所谓,都是一样的东西
kuing 发表于 2014-3-15 20:55

,又kk勇猛~~~~!

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

hbghlyj 发表于 2024-3-2 23:54
realnumber 发表于 2014-3-15 12:50
定理2 (Young不等式) 设 $p>1, q>1, \frac{1}{p}+\frac{1}{q}=1$, 则 $\forall a, b \geq 0$, 必有
\[
a \cdot b \leq \frac{a^p}{p}+\frac{b^q}{q},
\]
上式中等号成立的充要条件是 $a^p=b^q$.

梅加强. 数学分析[M]. 2 版. 北京: 高等教育出版社, 2020.
例 3.5.13 (Young 不等式). 设 $f$ 是 $[0,+\infty)$ 中的单调递增连续函数, $f(0)=0$, $f^{-1}(y)$ 表示 $f$ 的反函数, 则当 $a, b>0$ 时
\[
a b \leqslant \int_0^a f(x) d x+\int_0^b f^{-1}(y) d y,
\]
等号成立当且仅当 $b=f(a)$.
证明. 我们分情况讨论.
(1) $b=f(a)$. 这时 $f:[0, a] \rightarrow[0, b]$ 为连续函数, 其逆 $f^{-1}:[0, b] \rightarrow[0, a]$ 也是连续函数. 取 $[0, a]$ 的 $n$ 等分:
\[
\pi: 0=x_0<x_1<\cdots<x_n=a,
\]
则 $y_i=f\left(x_i\right)(0 \leqslant i \leqslant n)$ 构成 $[0, b]$ 的分划:
\[
\pi^{\prime}: 0=f\left(x_0\right)=y_0<y_1<\cdots<y_n=b
\]
因为 $f$ 在闭区间上一致连续, 故当 $n \rightarrow \infty$ 时 $\left\|\pi^{\prime}\right\| \rightarrow 0$. 因此
\[
\begin{aligned}
& \int_0^a f(x) d x+\int_0^b f^{-1}(y) d y \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^n f\left(x_i\right)\left(x_i-x_{i-1}\right)+\lim _{n \rightarrow \infty} \sum_{i=1}^n f^{-1}\left(f\left(x_{i-1}\right)\right)\left(f\left(x_i\right)-f\left(x_{i-1}\right)\right) \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^n\left[f\left(x_i\right)\left(x_i-x_{i-1}\right)+x_{i-1}\left(f\left(x_i\right)-f\left(x_{i-1}\right)\right)\right] \\
& =\lim _{n \rightarrow \infty} \sum_{i=1}^n\left[f\left(x_i\right) x_i-x_{i-1} f\left(x_{i-1}\right)\right] \\
& =\lim _{n \rightarrow \infty}\left[x_n f\left(x_n\right)-x_0 f\left(x_0\right)\right] \\
& =a f(a)-0 f(0)=a f(a)=a b .
\end{aligned}
\]
(2) $0<b<f(a)$. 由 $f$ 的连续性, 存在 $\xi \in(0, a)$ 使得 $b=f(\xi)$. 由 (1), 有
\[
\begin{aligned}
& \int_0^a f(x) d x+\int_0^b f^{-1}(y) d y \\
& =\int_0^{\xi} f(x) d x+\int_{\xi}^a f(x) d x+\int_0^{f(\xi)} f^{-1}(y) d y \\
& >f(\xi)(a-\xi)+\int_0^{\xi} f(x) d x+\int_0^{f(\xi)} f^{-1}(y) d y \\
& =f(\xi)(a-\xi)+\xi f(\xi)=a f(\xi)=a b .
\end{aligned}
\]
(3) $b>f(a)$. 这时将 $f$ 视为 $f^{-1}$ 的反函数就可将问题化为情形 (2).

3147

主题

8384

回帖

6万

积分

$\style{scale:11;fill:#eff}꩜$

积分
65372
QQ

显示全部楼层

hbghlyj 发表于 2024-3-3 00:14
相关帖子

S.5.pdf
Let $p$ be a real number with $p > 1$. We define $q$ (‘the conjugate exponent’ to $p$) by the equation $1/p + 1/q = 1$. It is easy to check that then $1/(p − 1) = q − 1$, so for positive real numbers $s, t$ we have $s = t^{p−1}$ iff $t = s^{q−1}$.
Proposition S.5.7 (Young's inequality) With $p, q$ as above and any positive real numbers $a, b$
\[
a b \leqslant a^p / p+b^q / q .
\]
Proof We shall show that
\[
a b \leqslant \int_0^a t^{p-1} \mathrm{~d} t+\int_0^b s^{q-1} \mathrm{~d} s=a^p / p+b^q / q .
\]
The right-hand equality comes from elementary integration, while the left-hand inequality is seen in terms of area in the diagram below. The idea is that the first integral is the area shaded vertically while the second is the area shaded horizontally. The graph of $t \mapsto t^{p-1}$ as $t$ goes from 0 to $a$ along the horizontal axis, matches the graph of $s \mapsto s^{q-1}$ as $s$ goes from 0 to $b$ along the vertical axis, because $s=t^{p-1}$ iff $t=s^{q-1}$. The left-hand diagram is for the case $a \leqslant b$ and the right-hand one is for $b \leqslant a$.
$type image.svg (45.29 KB, 下载次数: 20) diagram🖼️
As already noted, in each diagram the horizontally shaded area is $\int_0^b t^{q-1} \mathrm{~d} t$ while the vertically shaded area is $\int_0^a s^{p-1} \mathrm{~d} s$. In each case the sum of the shaded areas is at least as big as the area $a b$ of the rectangle with corners $(0,0),(a, 0),(0, b)$ and $(a, b)$. This gives the left-hand inequality at the beginning, and hence completes the proof.

The proof using area is the traditional one. Here is an alternative. Let $f(x)=a x-a^p / p-x^q / q$. Then $f^{\prime}(x)=a-x^{q-1}$ which is zero iff $x=a^{1 /(q-1)}=a^{p-1}$. This is a local maximum since $f^{\prime \prime}(x)=(1-q) x^{q-2}$, and $f^{\prime \prime}\left(a^{p-1}\right)<0$ since $1-q<0$. Now $f\left(a^{p-1}\right)=a^p-a^p / p-a^p / q=0$.
Also, $f(0)<0$, and $f(x) \rightarrow-\infty$ as $x \rightarrow \infty$, since $q>1$. Hence $f(x) \leqslant 0$ for all $x \in[0, \infty)$, and in particular $f(b) \leqslant 0$, which gives Young's inequality.

手机版|悠闲数学娱乐论坛(第3版)

GMT+8, 2025-3-4 19:17

Powered by Discuz!

× 快速回复 返回顶部 返回列表