Forgot password?
 Register account
View 2761|Reply 3

一个显而易见的定积分恒等式

[Copy link]

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

青青子衿 Posted 2013-10-13 12:44 |Read mode
一个显而易见的积分恒等式求代数证明
$\int_0^af(x) dx+\int_{f(0)}^{f(a)}f^{-1}(x) dx=af(a)$
其也有几何意义!

24

Threads

1010

Posts

110K

Credits

Credits
12655

Show all posts

战巡 Posted 2013-10-13 12:58
Last edited by hbghlyj 2025-5-16 19:00由于定积分求的是曲线和 $x$ 轴围成的面积,而其反函数的曲线和它关于 $y=x$ 对称,所以反函数在对应上下限内和 y 轴围成的面积和它是相等的,因此有定理:
\[\int_a^b f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x=\left.x f(x)\right|_a^b\]证明:
令 $t=f(x)$,则 $x=f^{-1}(t)$
\begin{aligned}
& \int_{f(a)}^{f(b)} f^{-1}(t) d t=\int_a^b x d f(x)=\int_a^b x f'(x) d x \\
& \int_a^b f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x \\
& =\int_a^b f(x) d x+\int_a^b x f'(x) d x \\
& =\int_a^b f(x) d x+\int_a^b x d f(x) \\
& =\int_a^b f(x) d x+\left.x f(x)\right|_a ^b-\int_a^b f(x) d x \\
& =\left.x f(x)\right|_a ^b
\end{aligned}

84

Threads

2336

Posts

110K

Credits

Credits
13076

Show all posts

其妙 Posted 2013-10-13 15:56
回复 2# 战巡
楼主遇到了高手了吧?
妙不可言,不明其妙,不着一字,各释其妙!

460

Threads

952

Posts

9848

Credits

Credits
9848

Show all posts

 Author| 青青子衿 Posted 2020-10-7 16:10
其变种就是定积分形式的杨氏(Young)不等式
设$f(x)$为定义域内严格单调递增函数($\,x>0\,$),且过原点。
那么,对于任意的实数  ,皆成立:
$\displaystyle\,\!ab\leqslant\int_0^af(x)\mathrm{d}x+\int_0^bf^{-1}(x)\mathrm{d}x$ 。
(等号当且仅当$\,b=f(a)\,$时取得)
其中,$\,f^{-1}(x)\,$为该函数$\,f(x)\,$的反函数。

zhuanlan.zhihu.com/p/41654910

Mobile version|Discuz Math Forum

2025-6-6 23:47 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit