Last edited by hbghlyj 2025-5-16 19:00由于定积分求的是曲线和 $x$ 轴围成的面积,而其反函数的曲线和它关于 $y=x$ 对称,所以反函数在对应上下限内和 y 轴围成的面积和它是相等的,因此有定理:
\[\int_a^b f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x=\left.x f(x)\right|_a^b\]证明:
令 $t=f(x)$,则 $x=f^{-1}(t)$
\begin{aligned}
& \int_{f(a)}^{f(b)} f^{-1}(t) d t=\int_a^b x d f(x)=\int_a^b x f'(x) d x \\
& \int_a^b f(x) d x+\int_{f(a)}^{f(b)} f^{-1}(x) d x \\
& =\int_a^b f(x) d x+\int_a^b x f'(x) d x \\
& =\int_a^b f(x) d x+\int_a^b x d f(x) \\
& =\int_a^b f(x) d x+\left.x f(x)\right|_a ^b-\int_a^b f(x) d x \\
& =\left.x f(x)\right|_a ^b
\end{aligned}