本帖最后由 hbghlyj 于 2023-1-11 17:04 编辑
序列空间$l^p$为内积空间,那么 $p=2$。
证明 [搬运$l^p$ space not having inner product]
设$\mathbf{x} = (1,0,0,0,\ldots),\mathbf{y} = (0,1,0,0,\ldots)$. 则$\mathbf{x+y} = (1,1,0,0,\ldots),\mathbf{x-y} = (1,-1,0,0,\ldots)$.
$$\|\mathbf{x}+\mathbf{y}\|_p^2 + \|\mathbf{x}-\mathbf{y}\|_p^2 = 2\times(1+1)^\frac{2}{p} = 2^{1+\frac{2}{p}}$$
则
$$2(\|\mathbf{x}\|_p^2+\|\mathbf{y}\|_p^2) = 2\times(1+1) = 4$$
若平行四边形恒等式成立,
$$2^{1+\frac{2}{p}} = 4 \implies 1+\frac{2}{p} = 2 \implies p = 2$$
相关问题: $L^p$空间为内积空间,那么$p=2$。
证明 [搬运How to prove that $L^p [0,1]$ isn't induced by an inner product? for $p\neq 2$]
For the case in which $1 \leq p < \infty$:
Let $\displaystyle f = \bigg( \frac{1}{\mu(A)} \bigg)^{1/p} \cdot \chi_A$ and $\displaystyle g = \bigg( \frac{1}{\mu(B)} \bigg)^{1/p} \cdot \chi_B$ where $A, B$ both have nonzero finite measure, are disjoint and $\chi$ is the indicator function.
Notice that $$\|f\|_p = \bigg( \int \vert f \vert^p \, d\mu \bigg)^{1/p} = \bigg( \int \frac{1}{\mu(A)} \chi_A \, d\mu \bigg)^{1/p} = \bigg( \int_A \frac{1}{\mu(A)} \, d\mu \bigg)^{1/p} = 1$$ and similarly $\|g\|_p = 1$.
Observe that\begin{align*}
\|f + g\|_p&= \bigg( \int \vert f + g \vert^p \, d\mu \bigg)^{1/p} \\
&=\bigg( \int \bigg \vert \bigg( \frac{1}{\mu(A)} \bigg)^{1/p} \cdot \chi_A + \bigg( \frac{1}{\mu(B)} \bigg)^{1/p} \cdot \chi_B \bigg \vert^p \, d\mu \bigg)^{1/p} \\
&= \bigg( \int \frac{1}{\mu(A)} \chi_A + \frac{1}{\mu(B)} \chi_B \, d\mu \bigg)^{1/p} \\
&= \bigg( \int_A \frac{1}{\mu(A)} \, d\mu + \int_B \frac{1}{\mu(B)} \, d\mu \bigg)^{1/p} \\
&= 2^{1/p}
\end{align*}Note: We use the fact that $A$ and $B$ are disjoint and get $\chi_A \cdot \chi_B = 0$ when moving from line 2 to line 3 above.
Similar reasoning shows $\|f - g\|_p = 2^{1/p}$.
Recall that in an inner product space, the Parallelogram law holds: $\|f + g\|_p^2 + \|f - g\|_p^2 = 2 \|f\|_p^2 + 2 \|g\|_p^2$.
But $\|f + g\|_p^2 + \|f - g\|_p^2 = 2 \cdot 2^{2/p}$ and $2 \|f\|_p^2 + 2 \|g\|_p^2 = 4$ which means that we must have $2^{2/p} = 2$ which only happens if $p = 2$.
For the case in which $p = \infty$:
Let $f = \chi_A$ and $g = \chi_B$ where $A, B$ are disjoint and both have nonzero measure.
Notice that $\|f\|_\infty = \|g\|_\infty = 1$ and $\|f + g\|_\infty = \|f - g\|_\infty = 1$. The Parallelogram Law doesn't hold because $\|f + g\|_\infty^2 + \|f - g\|_\infty^2 = 2$ but $ 2 \|f\|_\infty^2 + 2 \|g\|_\infty^2 = 4$ |