Forgot password?
 Create new account
View 146|Reply 0

[不等式] Van der Corput inequality

[Copy link]

3147

Threads

8493

Posts

610K

Credits

Credits
66163
QQ

Show all posts

hbghlyj Posted at 2022-11-15 07:13:43 |Read mode
Last edited by hbghlyj at 2023-5-1 20:38:00en.wikipedia.org/wiki/Van_der_Corput_inequality
以下$\langle v,w\rangle$表示$\displaystyle\sum_{i=1}^m\overline{v_i}w_i$, 它是一个复数. $\|v\|$表示$\sqrt{\langle v,v\rangle}$, 它是一个实数.
设$v , u_1 , ⋯, u_n$都是$m$个复数的组, 且$\|v\|=1$. 则
$$\left(\sum _{i=1}^{n}|\langle v,u_{i}\rangle |\right)^{2}\leq \sum _{i,j=1}^{n}|\langle u_{i},u_{j}\rangle |.$$
证明:
对任意$i=1,\dots,n$, 若$\langle v, u_{i} \rangle\ne0$, 取$\epsilon_i$为$\langle v, u_{i} \rangle\over\abs{\langle v, u_{i} \rangle}$, 则$|\epsilon_i|=1$; 若$\langle v, u_{i} \rangle=0$, 取$\epsilon_i=1$.
\begin{align*}\left(\sum_{i = 1}^{n} \left| \langle v, u_{i} \rangle \right|  \right)^{2}
&=\left( \sum_{i = 1}^{n} \epsilon_{i} \langle v,  u_{i} \rangle \right)^{2}&\\
&= \left( \left\langle v, \sum_{i = 1}^{n} \epsilon_{i} u_{i} \right\rangle \right)^{2}&\\
&\leq \| v \|^{2} \left\| \sum_{i = 1}^{n} \epsilon_{i} u_{i} \right\|^{2}&&由\text{Cauchy}不等式\\
&= \| v \|^{2} \left\langle \sum_{i = 1}^{n} \epsilon_{i} u_{i}, \sum_{j = 1}^{n} \epsilon_{i} u_{j} \right\rangle&\\
&= \sum_{i, j = 1}^{n}\epsilon_{i} \epsilon_{j}  \langle u_{i}, u_{j} \rangle&&因为\|v\|=1\\
&\leq \sum_{i, j = 1}^{n} | \langle u_{i}, u_{j} \rangle | &&因为|\epsilon_i|=1对所有i
\end{align*}
van der Corput 不等式的意义:
如果内积空间 $V$ 中的单位向量 $v$ 与许多向量 $u_1,\dots ,u_n\in V$ 强相关,那么很多配对 $u_i , u_j$ 必须彼此强相关。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list