Forgot password?
 Create new account
View 168|Reply 3

[不等式] (m+n)!≤√(2m)!(2n)!

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-10-13 18:55:53 |Read mode
Last edited by hbghlyj at 2023-11-8 10:02:00$\forall m,n\inN,(m+n)!≤\sqrt{(2m)!(2n)!}$

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-10-13 20:41:15

问题来源

Last edited by hbghlyj at 2023-11-8 10:09:00由$(m+n)!^2≤(2m)!(2n)!$和$m!n!≤(m+n)!$可推出$m!n!(m+n)!≤(2m)!(2n)!$
证明了这个$(2m)!(2n)!\over m!n!(m+n)!$大于1,事实上是正整数:Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-10-13 22:17:44
Last edited by hbghlyj at 2023-11-8 10:02:00方法1、因为杨辉三角形每行中央的数最大,
$$\binom{2m+2n}{2m}≤\binom{2m+2n}{m+n}\implies\frac{(2m+2n)!}{(2m)!(2n)!}≤\frac{(2m+2n)!}{(m+n)!^2}\implies(m+n)!^2≤(2m)!(2n)!
$$
方法2、来自integration.pdf末页Example 8.6用Gamma函数和Cauchy-Schwarz不等式
\begin{aligned}
(m+n)!=\int_0^{\infty} x^{m+n} e^{-x} d x & =\int_0^{\infty} x^m e^{-x / 2} x^n e^{-x / 2} d x \\
& \leq\left(\int_0^{\infty} x^{2 m} e^{-x} d x\right)^{1 / 2}\left(\int_0^{\infty} x^{2 n} e^{-x} d x\right)^{1 / 2} \\
& =\sqrt{(2 m) !} \sqrt{(2 n) !} .
\end{aligned}

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2023-10-16 10:24:50
致各位论坛网友:

由于 hbghlyj 操作数据库失误导致由 2023-9-26 至 2023-11-5 间期的所有帖子的内文都被清空,在此给大家真诚道歉。

现在我们正在浏览这期间的帖子,努力回忆内容,尽可能地多恢复一些,如果您还记得本帖原本的内容,也希望您能编辑回来,麻烦各位了。

手机版Mobile version|Leisure Math Forum

2025-4-20 22:04 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list