Forgot password?
 Register account
View 302|Reply 2

[不等式] (m+n)!≤√(2m)!(2n)!

[Copy link]

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

hbghlyj Posted 2023-10-13 18:55 |Read mode
Last edited by hbghlyj 2023-11-8 10:02$\forall m,n\inN,(m+n)!≤\sqrt{(2m)!(2n)!}$

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-10-13 20:41

问题来源

Last edited by hbghlyj 2023-11-8 10:09由$(m+n)!^2≤(2m)!(2n)!$和$m!n!≤(m+n)!$可推出$m!n!(m+n)!≤(2m)!(2n)!$
证明了这个$(2m)!(2n)!\over m!n!(m+n)!$大于1,事实上是正整数:Prove that $(2m)!(2n)!$ is a multiple of $m!n!(m+n)!$ for any non-negative integers $m$ and $n$.

3153

Threads

7906

Posts

610K

Credits

Credits
64096
QQ

Show all posts

 Author| hbghlyj Posted 2023-10-13 22:17
Last edited by hbghlyj 2023-11-8 10:02方法1、因为杨辉三角形每行中央的数最大,
$$\binom{2m+2n}{2m}≤\binom{2m+2n}{m+n}\implies\frac{(2m+2n)!}{(2m)!(2n)!}≤\frac{(2m+2n)!}{(m+n)!^2}\implies(m+n)!^2≤(2m)!(2n)!
$$
方法2、来自integration.pdf末页Example 8.6用Gamma函数和Cauchy-Schwarz不等式
\begin{aligned}
(m+n)!=\int_0^{\infty} x^{m+n} e^{-x} d x & =\int_0^{\infty} x^m e^{-x / 2} x^n e^{-x / 2} d x \\
& \leq\left(\int_0^{\infty} x^{2 m} e^{-x} d x\right)^{1 / 2}\left(\int_0^{\infty} x^{2 n} e^{-x} d x\right)^{1 / 2} \\
& =\sqrt{(2 m) !} \sqrt{(2 n) !} .
\end{aligned}

Mobile version|Discuz Math Forum

2025-6-5 01:07 GMT+8

Powered by Discuz!

× Quick Reply To Top Edit