Forgot password?
 Create new account
View 202|Reply 11

[组合] 组合式证明

[Copy link]

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

力工 Posted at 2023-6-1 20:49:24 |Read mode
Last edited by 力工 at 2023-6-1 23:14:00证明:$\frac{{n\choose0}}{m+1}-\frac{{n\choose1}}{m+2}+\frac{{n\choose2}}{m+3}-\cdots +(-1)^n\frac{{n\choose n}}{m+n+1}=\frac{1}{(m+n+1){m+n\choose n}}$.
请原谅我,虽然坛子上有很多的组合计算可参考,但没参透。

Comment

早回头看贴就好了,调了半天,才发现有提示了。唉  Posted at 2023-6-1 21:06

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2023-6-1 21:18:40

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-6-1 21:27:24
kuing 发表于 2023-6-1 21:18
看起来和 https://kuing.cjhb.site/forum.php?mod=viewthread&tid=2505 差不多……
参考了几个贴,也看过这个,但不知如何下去。

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-6-1 22:43:24
右邊應該係$\dfrac{n!m!}{(m+n+1)!}$

artofproblemsolving.com/community/c728438h176 … binomial_coefficient

$\displaystyle \sum_{r=0}^n (-1)^r \binom{n}{r}\frac{1}{r+s}=\frac{n!(s-1)!}{(n+s)!}$

$\displaystyle p(r)=\frac{1}{r+s} ~~ r=0,1,\dots,n$

$(r+s)p(r)-1=kr(r-1)\dots (r-n)$

Put $r=-s,~-1=k(-s)(-s-1)\dots (-s-n),~k=\dfrac{(-1)^n}{s(s+1)\dots (s+n)}$

$\displaystyle (r+s)p(r)-1=(r+s)\sum_{k=0}^n\binom{r}{k} \Delta^k p(0)-1=\frac{(-1)^n r(r-1)\dots (r-n)}{s(s+1)\dots (s+n)}$

$\displaystyle \frac{1}{n!}\Delta^n p(0)=\frac{(-1)^n}{s(s+1)\dots (s+n)}$

$\displaystyle \sum_{r=0}^n (-1)^r \binom{n}{r}\frac{1}{r+s}=(-1)^n \Delta^n p(0)=\frac{n!}{s(s+1)\dots (s+n)}=\frac{n!(s-1)!}{(n+s)!}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

276

Threads

691

Posts

6120

Credits

Credits
6120

Show all posts

 Author| 力工 Posted at 2023-6-1 23:19:00
tommywong 发表于 2023-6-1 22:43
右邊應該係$\dfrac{n!m!}{(m+n+1)!}$

https://artofproblemsolving.com/community/c728438h1766887_summat ...
$p(r)=\frac{1}{r+s},r=0,1,2\cdots ,n$
那这个$(r+s)p(r)-1=kr(r-1)\cdots (r-n)$不等于0,表示什么呢?请大佬讲解下吧。

Comment

难道右边因$r=0,1,...,n$的结果0?  Posted at 2023-6-1 23:21

48

Threads

969

Posts

110K

Credits

Credits
14870
QQ

Show all posts

Czhang271828 Posted at 2023-6-1 23:22:22
二项式展开表明
$$
(1-x)^n=\sum_{k=0}^n\binom{n}{k}(-x)^k.
$$
因此
$$
(1-x)^n\cdot x^m=\sum_{k=0}^n\binom{n}{k}(-1)^kx^{m+k}.
$$
两侧对 $x\in[0,1]$ 积分, 得
$$
\int_0^1(1-x)^nx^m\mathrm dx=\sum_{k=0}^n\dfrac{\binom{n}{k}\cdot (-1)^k}{m+1+k}.
$$
左式就是著名的 $\beta$​-积分了, 懒得码字抄一个答案:
$$
\begin{align*}
\int_0^1(1-x)^mx^n\,\mathrm{d}x
&=\frac{m}{n+1}\frac{m-1}{n+2}\cdots\frac1{n+m}\int_0^1x^{n+m}\,\mathrm{d}x\\
&=\frac{m}{n+1}\frac{m-1}{n+2}\cdots\frac1{n+m}\frac1{n+m+1}\\
&=\frac{n!\,m!}{(n+m+1)!}\\
&=\frac{\Gamma(n+1)\Gamma(m+1)}{\Gamma(n+m+2)}\\[6pt]
&=\mathrm{B}(n+1,m+1).
\end{align*}
$$

Comment

论坛似乎没有 \Beta 的选项, 所以用 \mathrm B 了 (虽然不是一个东西)  Posted at 2023-6-1 23:24

Rate

Number of participants 1威望 +1 Collapse Reason
力工 + 1 很有用!

View Rating Log

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2023-6-2 02:11:08

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-6-2 02:32:36 From the mobile phone
力工 发表于 2023-6-1 23:19
$p(r)=\frac{1}{r+s},r=0,1,2\cdots ,n$
那这个$(r+s)p(r)-1=kr(r-1)\cdots (r-n)$不等于0,表示什么呢? ...
我一開始嘅p(r)係已知p(0),p(1),p(2),...,p(n)嘅n次多項式,右邊設kr(r-1)...(r-n)係揾p(r)。
因為我唔覺得條公式好值得證明,所以懶得說明。
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2023-6-2 02:46:07 From the mobile phone
战巡 发表于 2023-6-2 02:11
https://kuing.cjhb.site/forum.php?mod=viewthread&tid=2444
无非是$pn=m+1, s=1$的事
啱呀,無非是m=pn/s-1的事
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

手机版Mobile version|Leisure Math Forum

2025-4-21 14:12 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list