Forgot password
 Register account
View 307|Reply 2

[组合] 计算:$\sum_{i=0}^{1011}(-3)^iC_{2022}^{2i}=$

[Copy link]

68

Threads

406

Posts

3

Reputation

Show all posts

Tesla35 posted 2023-1-12 19:24 |Read mode
计算:$\sum_{i=0}^{1011}(-3)^iC_{2022}^{2i}=$

673

Threads

110K

Posts

218

Reputation

Show all posts

kuing posted 2023-1-12 21:25
这题要用虚数 `i`,然而楼主原题又有 `i`,只好用直立体区分鸟
$\newcommand\i{\,\mathrm i\,}$
\begin{align*}
\bigl(1+\sqrt3\i\bigr)^{2022}&=1+\sqrt3\i C_{2022}^1-3C_{2022}^2-3\sqrt3\i C_{2022}^3+3^2C_{2022}^4+\cdots-3^{1011}C_{2022}^{2022},\\
\bigl(1-\sqrt3\i\bigr)^{2022}&=1-\sqrt3\i C_{2022}^1-3C_{2022}^2+3\sqrt3\i C_{2022}^3+3^2C_{2022}^4+\cdots-3^{1011}C_{2022}^{2022},
\end{align*}
相加即得
\[\bigl(1+\sqrt3\i\bigr)^{2022}+\bigl(1-\sqrt3\i\bigr)^{2022}
=2\sum_{i=0}^{1011}(-3)^iC_{2022}^{2i},\]
两边除以 `2^{2022}` 变成
\[(\cos60\du+\sin60\du\i)^{2022}+(\cos120\du+\sin120\du\i)^{2022}
=\frac1{2^{2021}}\sum_{i=0}^{1011}(-3)^iC_{2022}^{2i},\]
由于 `6\mid2022`,故上式左边其实就是 `2`,所以所求式 `=2^{2022}`。

68

Threads

406

Posts

3

Reputation

Show all posts

original poster Tesla35 posted 2023-1-13 11:15
kuing 发表于 2023-1-12 21:25
这题要用虚数 `i`,然而楼主原题又有 `i`,只好用直立体区分鸟
$\newcommand\i{\,\mathrm i\,}$
\begin{ali ...
懂了。果真上复数了

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-20 05:38 GMT+8

Powered by Discuz!

Processed in 0.016186 seconds, 43 queries