Forgot password
 Register account
View 271|Reply 1

[组合] 求助三个求和式的化简

[Copy link]

423

Threads

909

Posts

0

Reputation

Show all posts

lemondian posted 2025-2-2 20:29 |Read mode
Last edited by hbghlyj 2025-3-18 17:36请大家帮忙化简一下,过程尽量详细一点,谢谢了
\[
\begin{aligned}
& \sum_{k=0}^{r-1} C_{2 r}^k\left[(-1)^{r-k+1}-1\right] \\
& \sum_{k=0}^{r-1}(-1)^{r+k+1} C_{2 r}^k \\
& \sum_{k=0}^{r-1}(-1)^{r+k} C_{2 r}^k\left[(-1)^{r-k+1}-1\right]
\end{aligned}
\]

1

Threads

18

Posts

4

Reputation

Show all posts

ZCos666 posted 2025-3-18 19:05
第三个就是第一个,第二个也包含在第一个中

\[ \begin{aligned}
\sum_{k=0}^{r-1}(-1)^{r+k+1}\binom{2r}{k}&=(-1)^{r+1}\cdot\dfrac{(-1)^{r+1}}{2}\binom{2r}{r}\\
&=\dfrac{1}{2}\binom{2r}{r}
\end{aligned} \]

\[ \begin{aligned}
\sum_{k=0}^{r-1}\left((-1)^{r-k+1}-1\right)\binom{2r}{k}&=\dfrac{1}{2}\binom{2r}{r}-\sum_{k=0}^{r-1}\binom{2r}{k}\\
&=\dfrac{1}{2}\binom{2r}{r}-\dfrac{1}{2}\left(4^r-\binom{2r}{r}\right)\\
&=\binom{2r}{r}-2^{2r-1}
\end{aligned} \]

Rate

Number of participants 1威望 +2 Collapse Reason
力工 + 2 精彩!

View Rating Log

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-21 11:53 GMT+8

Powered by Discuz!

Processed in 0.018483 seconds, 48 queries