Forgot password?
 Create new account
View 152|Reply 1

[组合] 求助三个求和式的化简

[Copy link]

410

Threads

1045

Posts

110K

Credits

Credits
11582

Show all posts

lemondian Posted at 2025-2-2 20:29:30 |Read mode
Last edited by hbghlyj at 2025-3-18 17:36:50请大家帮忙化简一下,过程尽量详细一点,谢谢了
\[
\begin{aligned}
& \sum_{k=0}^{r-1} C_{2 r}^k\left[(-1)^{r-k+1}-1\right] \\
& \sum_{k=0}^{r-1}(-1)^{r+k+1} C_{2 r}^k \\
& \sum_{k=0}^{r-1}(-1)^{r+k} C_{2 r}^k\left[(-1)^{r-k+1}-1\right]
\end{aligned}
\]

1

Threads

19

Posts

344

Credits

Credits
344
QQ

Show all posts

ZCos666 Posted at 2025-3-18 19:05:00
第三个就是第一个,第二个也包含在第一个中

\[ \begin{aligned}
\sum_{k=0}^{r-1}(-1)^{r+k+1}\binom{2r}{k}&=(-1)^{r+1}\cdot\dfrac{(-1)^{r+1}}{2}\binom{2r}{r}\\
&=\dfrac{1}{2}\binom{2r}{r}
\end{aligned} \]

\[ \begin{aligned}
\sum_{k=0}^{r-1}\left((-1)^{r-k+1}-1\right)\binom{2r}{k}&=\dfrac{1}{2}\binom{2r}{r}-\sum_{k=0}^{r-1}\binom{2r}{k}\\
&=\dfrac{1}{2}\binom{2r}{r}-\dfrac{1}{2}\left(4^r-\binom{2r}{r}\right)\\
&=\binom{2r}{r}-2^{2r-1}
\end{aligned} \]

Rate

Number of participants 1威望 +2 Collapse Reason
力工 + 2 精彩!

View Rating Log

手机版Mobile version|Leisure Math Forum

2025-4-21 14:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list