Forgot password?
 Create new account
View 118|Reply 2

[组合] $(1+X_i)$的完全对称多项式

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-11-15 17:43:46 |Read mode
$(1+X_i)$的完全对称多项式总能表为$X_i$的完全对称多项式的线性组合?

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-15 17:48:43
完全对称多项式的定义:
  1. completeSymmetricPolynomial[i_?IntegerQ,vars_?ListQ]:=Total@Union@Tuples[Times@@vars,{i}];
Copy the Code

将$1+a,1+b,1+c,1+d$的2次完全对称多项式写成$a,b,c,d$的2、1、0次完全对称多项式的线性组合:
$$h_2(1+a,1+b,1+c,1+d)=h_2(a,b,c,d)+4h_1(a,b,c,d)+6h_0(a,b,c,d)$$
  1. Simplify[completeSymmetricPolynomial[2,{1+a,1+b,1+c}] == completeSymmetricPolynomial[2,{a,b,c}] + 4 completeSymmetricPolynomial[1,{a,b,c}] + 6 completeSymmetricPolynomial[0,{a,b,c}]]
Copy the Code
True
系数为$1,4,6$.
一般地:$\displaystyle h_{k}(1+X_{1},\ldots ,1+X_{n})=\sum _{j=0}^{k}{\binom {n+k-1}{k-j}}h_{j}(X_{1},\ldots ,X_{n}).$ 如何证明呢

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-11-16 20:51:00
不对,$n=4,\;k=2,\;0\le j\le k$代入$\binom {n+k-1}{k-j}$不符合上面的$1,4,6$啊,哪里弄错了呢

手机版Mobile version|Leisure Math Forum

2025-4-21 14:16 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list