Forgot password?
 Create new account
View 1917|Reply 4

[数列] 组合数求和

[Copy link]

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

aishuxue Posted at 2014-3-23 12:17:47 |Read mode
Last edited by hbghlyj at 2025-3-22 00:04:53求和 $S=\frac{1}{2014} C_{2014}^0-\frac{1}{2013} C_{2013}^1+\frac{1}{2012} C_{2012}^2-\frac{1}{2011} C_{2011}^3+\cdots-\frac{1}{1007} C_{1007}^{1007}$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-23 16:07:57
回复 1# aishuxue


\[T_n(x)=\frac{n}{2}\sum_{k=0}^{[\frac{n}{2}]}(-1)^k\frac{(n-k-1)!}{k!(n-2k)!}(2x)^{n-2k}\]
其中$T_n(x)$为第一类切比雪夫多项式,有:
\[T_n(x)=\frac{(x-\sqrt{x^2-1})^n+(x+\sqrt{x^2-1})^n}{2}=\cos(n\arccos(x))\]
因此有
\[\sum_{k=0}^{2n}(-1)^k\frac{C^k_{2n-k}}{2n-k}=\frac{T_{2n}(\frac{1}{2})}{n}=\frac{\cos(\frac{2n\pi}{3})}{n}\]
原式$S=-\frac{1}{2014}$

93

Threads

88

Posts

983

Credits

Credits
983

Show all posts

 Author| aishuxue Posted at 2014-3-23 20:35:00
有其它更基本的方法吗?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-24 03:31:27
Last edited by 战巡 at 2014-3-24 03:42:00回复 3# aishuxue


其实已经相当基本了,一点高等的东西都没有
你去推第一个式子就可以了,设法证明:
\[T_{n+1}(x)=2xT_n(x)-T_{n-1}(x)\]
加上易证$T_0=1, T_1=x$就有$T_n(x)$为切比雪夫多项式

我引入这个其实是想告诉你这个题潜在的出处,有些混球出题出到没东西出就拿这些高级的玩意带入特殊值出来了
就本题而言,令$\sum_{k=0}^{2n}(-1)^k\frac{C_{2n-k}^k}{2n-k}=a_n$,你也可以设法证明$(n+1)a_{n+1}=-na_n-(n-1)a_{n-1}$

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2024-7-1 16:01:56
关于切比雪夫多项式以及性质,有基础些的资料,链接,或论文推荐一些吗?
适合新手的,比如重点中学的新高三学生

手机版Mobile version|Leisure Math Forum

2025-4-21 19:14 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list