Forgot password?
 Create new account
View 162|Reply 1

一个积分不等式(From 西西)

[Copy link]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

hbghlyj Posted at 2023-4-1 19:14:24 |Read mode
@pxchg1200 发表于 2013-5-10 23:23
设$f(x)$是$[0,1]\rightarrow R $上的连续函数,且记$\displaystyle F(x)=\int_{0}^{x}{f(t)dt}$,并有
\[ \int_{0}^{1}{x^2f(x)dx}=-2\int_{\frac{1}{2}}^{1}{F(x)dx}\]
求证
\[ \int_{0}^{1}{f^2(x)dx}\geq 80\left( \int_{0}^{1}{f(x)dx}\right)^2 \]

3148

Threads

8489

Posts

610K

Credits

Credits
66148
QQ

Show all posts

 Author| hbghlyj Posted at 2025-3-8 16:56:54
我们从 $\displaystyle \int_{\frac{1}{2}}^1 F(x)\,dx = \int_{\frac12}^1\int_0^x f(t)\,dt \,dx =  \frac{1}{2}\int_0^{\frac12} f(x)\,dx + \int_{\frac12}^1 (1-x)f(x)\,dx$ 开始。

因此我们有,$$\int_0^1 x^2f(x)\,dx = -\int_0^{\frac12}f(x)\,dx - 2\int_{\frac12}^1 (1-x)f(x)\,dx$$
并且,$$\int_0^1 f(x)\,dx = -\int_{\frac12}^1 (x-1)^2f(x)\,dx - \int_0^{\frac12} x^2f(x)\,dx$$
因此,$\displaystyle \int_{\frac12}^1 \{1+(x-1)^2\}f(x)\,dx + \int_0^{\frac12} \{1+x^2\}f(x)\,dx = 0$

设,$\phi(x) = 1+x^2$ 对 $x \in [0,\frac12)$ 和 $1+(x-1)^2$ 对 $x \in [\frac12,1]$

那么,$\displaystyle \int_0^1 \phi(x)f(x)\,dx = 0$

现在根据Cauchy-Schwarz不等式:
$$\left(\int_0^1 f(x)\,dx \right)^2 = \left(\int_0^1 f(x) + m\phi(x)f(x)\,dx \right)^2 \le \left(\int_0^1 f^2(x)\,dx\right)\left(\int_0^1 (1+m\phi(x))^2\,dx\right)$$
因为,$\displaystyle \int_0^1 (1+m\phi(x))^2\,dx = 1 + \frac{13}{6}m +\frac{283}{240}m^2 \ge \frac{4}{849}$

我们有,$\displaystyle \left(\int_0^1 f(x)\,dx \right)^2 \le \frac{4}{849}\int_0^1 f^2(x)\,dx$

常数 $\frac{4}{849}$ 是最优的,因为当 $f(x) = 1- \frac{260}{283}\phi(x)$ 时等号成立。

手机版Mobile version|Leisure Math Forum

2025-4-20 12:32 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list