Forgot password?
 Create new account
View 95|Reply 3

SNF in non-Bezout domain

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2023-3-9 18:43:20 |Read mode
SageMath
  1. R.<s> = EquationOrder(x^2 + 5)
  2. A = matrix(R,[
  3.     [3, 0,0],
  4.     [0, 2+2*s, 0],
  5.     [0, 0, 4]
  6. ])
  7. R.ideal([3, 2+2*s]).gens_reduced()
Copy the Code

$s=\sqrt{-5}$
$R=\Bbb Z$
So the ideal $(3,2+2s)$ has reduced generators $(3, s + 1)$, so it is not principal ideal.
  1. A.smith_form()
Copy the Code

报错
ArithmeticError:
cannot find lambda, mu such that lambda*d[i,i] + mu*d[j,j] = t

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-9 18:44:01

虽然SageMath报错, 但是$A$确实可以化成Smith normal form

注意到$(3,4)=(1)$
$A=\pmatrix{3\\&2+2\sqrt{-5}\\&&4}$可以通过初等行、列变换化成$A'=\pmatrix{1\\&2+2\sqrt{-5}\\&&12}$
The matrix $A'$ is in SNF, since $1\mid 2+2\sqrt{-5}$ and $2+2\sqrt{-5}\mid12$[because $12=(2+2\sqrt{-5})(1-\sqrt{-5})$]
  1. R.<s> = EquationOrder(x^2 + 5)
  2. 12/(2+2*s)
Copy the Code

-s+1

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-9 18:50:46
In non-Bezout domain, not all matrices can be transformed into Smith normal form.
SageMath strictly follows the SNF algorithm of Bezout domain, it fails to find GCD of $3$ and $2+2\sqrt{-5}$, so it fails to find SNF of $A$, however $A$ does have SNF $A'$.

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2023-3-9 18:53:38
话说 SageMath 的论坛 ask.sagemath.org 连接超时了, 前天还能打开

手机版Mobile version|Leisure Math Forum

2025-4-20 21:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list