Forgot password
 Register account
View 293|Reply 4

[几何] 維基的K3 surface圖 是什麼的圖象?

[Copy link]

3208

Threads

7845

Posts

51

Reputation

Show all posts

hbghlyj posted 2024-2-17 05:01 |Read mode
Last edited by hbghlyj 2024-3-3 21:25Fermat quartic surface $x^4 + y^4+ z^4 = 0$
原題太簡單,已解決:forum.php?mod=viewthread&tid=11955


en.m.wikipedia.org/wiki/K3_surface
330px-K3_surface[1].png
這是什麼的圖象?

0

Threads

410

Posts

6

Reputation

Show all posts

爪机专用 posted 2024-2-17 13:37
??x^4 + y^4+ z^4 = 0 不是得到 x=y=z=0 吗?哪来曲线
I am majia of kuing

0

Threads

410

Posts

6

Reputation

Show all posts

爪机专用 posted 2024-2-17 16:20
hbghlyj 发表于 2024-2-17 16:08
它是复數的
https://en.wikipedia.org/wiki/Quartic_surface
六元空间?
你先介绍一下各种定义啥的,不然根本看不懂这些都是啥,只能移到高数区
I am majia of kuing

3208

Threads

7845

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2024-3-4 05:16
是的。$x,y,z\inC$,是複數3維,所以是實數6維。

3208

Threads

7845

Posts

51

Reputation

Show all posts

original poster hbghlyj posted 2024-3-4 05:35
经过一些坐标变换,可以在3维画出来,例如:
https://mathworld.wolfram.com/CayleyCubic.html
If the ordinary double points in projective 3-space are taken as (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1), then the equation of the surface in projective coordinates is
\begin{equation} {1\over x_0}+{1\over x_1}+{1\over x_2}+{1\over x_3}=0 \end{equation}
(Hunt). Defining
coordinates with plane at infinity $v=x_0+x_1+x_2+2x_3$ and
\begin{align}x={x_0\over v}\\y= {x_1\over v}\\z= {x_2\over v}\end{align}
then gives the equation
\begin{equation} -5(x^2y+x^2z+y^2x+y^2z+z^2y+z^2x)+2(xy+xz+yz)=0 \label5\end{equation}
plotted in the left figure above (Hunt). The slightly different form
\begin{equation} 4(x^3+y^3+z^3+w^3)-(x+y+z+w)^3=0 \end{equation}
is given by Endraß which, when rewritten in tetrahedral coordinates, becomes
\begin{equation} x^2+y^2-x^2z+y^2z+z^2-1=0, \label7\end{equation}
plotted in the right figure above.
CayleyCubic_500.gif CayleyCubic2_500.gif
\eqref{5}\eqref{7}

The Hessian of the Cayley cubic is given by WolframAlpha
\begin{equation}
\begin{split}
0&={x_0}^2(x_1x_2+x_1x_3+x_2x_3)+x_1^2(x_0x_2+x_0x_3+x_2x_3)\\
&\quad+x_2^2(x_0x_1+x_0x_3+x_1x_3)+x_3^2(x_0x_1+x_0x_2+x_1x_2).
\end{split}
\end{equation}
in homogeneous coordinates $x_0$, $x_1$, $x_2$, and $x_3$.
Taking the plane at infinity as $v=5(x_0+x_1+x_2+2x_3)/2$ and setting $x$, $y$, and $z$ as above gives the equation
\begin{equation}
\begin{split}
25&[x^3(y+z)+y^3(x+z)+z^3(x+y)]+50(x^2y^2+x^2z^2+y^2z^2)
\\&-125(x^2yz+y^2xz+z^2xy)+60xyz-4(xy+xz+yz)=0,
\end{split}\label9
\end{equation}
plotted above (Hunt). The Hessian of the Cayley cubic has 14 ordinary double points, four more than a the general Hessian of a smooth cubic surface (Hunt).
CayleyCubicHessian_800.gif
\eqref{9}

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-12 21:09 GMT+8

Powered by Discuz!

Processed in 0.015276 seconds, 26 queries