Forgot password?
 Create new account
View 104|Reply 1

根式化简

[Copy link]

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

hbghlyj Posted at 2024-4-2 18:16:48 |Read mode
这帖中($0<\text{ta},\text{tb}<1$),由\[x=\frac{\sqrt{\text{ta}^2+\text{tb}^2} \sqrt{\text{ta}^2 \text{tb}^2+1}+\text{ta} \text{tb} (\text{ta}+\text{tb})+\text{ta}+\text{tb}}{\text{ta}^2\text{tb}^2+ \left(\text{ta}+\text{tb}\right)^2+1}\]
怎么才能得到\[\frac{1-\sqrt{1-x^2}}{x}=\frac{\left(\sqrt{\text{ta}^2+\text{tb}^2}+\text{ta}+\text{tb}\right) \left(-\sqrt{\text{ta}^2 \text{tb}^2+1}+\text{ta} \text{tb}+1\right)}{2 \text{ta} \text{tb}}\]
呢?
直接代入FullSimplify
  1. FullSimplify[(1-Sqrt[1-x^2])/x/.x->(ta+tb+ta tb (ta+tb)+Sqrt[ta^2+tb^2] Sqrt[1+ta^2 tb^2])/(1+2 ta tb+tb^2+ta^2 (1+tb^2))]
Copy the Code

没有效果啊

3146

Threads

8493

Posts

610K

Credits

Credits
66158
QQ

Show all posts

 Author| hbghlyj Posted at 2024-4-2 18:24:00
上面是tanh半角公式$\tanh(\frac{\tanh^{-1}x}2)=\frac{1-\sqrt{1-x^2}}{x}$,多重根式算不出来

若从结果出发,可以代入tanh二倍角公式$\tanh(2\tanh^{-1}y)=\frac{2y}{1+y^2}$验证
  1. FullSimplify[(ta+tb+ta tb (ta+tb)+Sqrt[ta^2+tb^2] Sqrt[1+ta^2 tb^2])/(1+2 ta tb+tb^2+ta^2 (1+tb^2))-(2y)/(1+y^2)/.y->((ta+tb+Sqrt[ta^2+tb^2]) (1+ta tb-Sqrt[1+ta^2 tb^2]))/(2 ta tb)]
Copy the Code

很快就输出了0
从结果出发很容易验证,但是在不知结果时,怎么正向计算出tanh半角?

手机版Mobile version|Leisure Math Forum

2025-4-20 21:46 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list