|
Author |
hbghlyj
Posted at 2024-6-2 21:52:04
Last edited by hbghlyj at 2024-6-3 19:01:00$ \int_2^{\infty} \frac{1}{k}\sin(kr) \mathrm{d}r $发散。但如果乘以$e^{-\varepsilon r}$:
mathematica.stackexchange.com/questions/22986 … -to-compute-integral
$Q(k) = \lim \limits_{\varepsilon \to 0} \int_2^{\infty} \frac{e^{-\varepsilon r}}{k}\sin(kr) \mathrm{d}r = \frac{\cos(2k)}{k^2}$
$$\int_2^{\infty} \frac{e^{-\varepsilon r}}{k}\sin(kr) \mathrm{d}r =[-\frac{e^{-\varepsilon r}(\varepsilon \sin (k r)+k \cos (k r))}{k\left(\varepsilon^2+k^2\right)}]^\infty_{r=2}=\frac{e^{-2\varepsilon}(\varepsilon \sin (2k)+k \cos (2k))}{k\left(\varepsilon^2+k^2\right)}\xrightarrow[\varepsilon\to0]{}\frac{\cos(2k)}{k^2}$$ |
|