Forgot password?
 Create new account
View 214|Reply 7

[几何] 角平分线的题目 求两线段和等于一条线段

[Copy link]

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

走走看看 Posted at 2024-12-24 10:18:50 |Read mode

角平分线 截长补短.png

本人只看到了一种截长法,但有个抖音老师说,可以有九种方法。
希望能够看到截长以外的几种常见方法。

Comment

可以看沈文选教授的<几何名题啥>(两厚本,抱歉忘了书名),专门有一节讲含$60\du$的三角形。  Posted at 2024-12-26 16:32

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

 Author| 走走看看 Posted at 2024-12-24 11:42:42
补短方法,试了下,好像难以做到。这是一道初中数学题。

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

 Author| 走走看看 Posted at 2024-12-24 17:39:59
还是给抖音老师发私信,问问是否真有其他方法。
然后发在这里。

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2024-12-24 20:38:54
随便啦,非要那么多种方法干啥

角平分线定理得
\[\frac{AE}{AC}=\frac{BE}{BC}=\frac{AB}{AC+BC}\]
\[\frac{CD}{AC}=\frac{BD}{AB}=\frac{BC}{AC+AB}\]
接下来
\[\frac{AB}{AC+BC}+\frac{BC}{AC+AB}=\frac{AB^2+AC\cdot (AB+BC)+BC^2}{AC^2+AC\cdot(AB+BC)+AB\cdot BC}\]
然后余弦定理
\[AB^2+BC^2-AC^2=2\cos(60\du)BC\cdot AB=BC\cdot AB\]
\[\mbox{原式}=\frac{AC^2+BC\cdot AB+AC\cdot(AB+BC)}{AC^2+AC
\cdot(AB+BC)+AB\cdot BC}=1=\frac{AE}{AC}+\frac{CD}{AC}\]

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

 Author| 走走看看 Posted at 2024-12-26 09:04:34
战巡 发表于 2024-12-24 20:38
随便啦,非要那么多种方法干啥

角平分线定理得
很好,谢谢您!

700

Threads

110K

Posts

910K

Credits

Credits
94187
QQ

Show all posts

kuing Posted at 2024-12-26 18:21:38
QQ20241226-180537.png

作内切圆及相应辅助线如上图,有 `\angle HFG=180\du-\angle B=120\du`,以及
\begin{align*}
\angle EFD&=\angle AFC\\
&=180\du-\angle FAC-\angle FCA\\
&=180\du-\frac{\angle BAC+\angle BCA}2\\
&=180\du-\frac{180\du-\angle B}2\\
&=120\du,
\end{align*}
因此
\[\angle HFG=\angle EFD\riff\angle HFE=\angle GFD\riff HE=GD,\]
所以
\[AE+CD=AH+HE+CG-GD=AH+CG=AI+CI=AC.\]

134

Threads

761

Posts

5446

Credits

Credits
5446

Show all posts

 Author| 走走看看 Posted at 2024-12-29 09:34:12
kuing 发表于 2024-12-26 18:21
作内切圆及相应辅助线如上图,有 `\angle HFG=180\du-\angle B=120\du`,以及
\begin{align*}
\angle EFD ...
厉害!谢谢您!

手机版Mobile version|Leisure Math Forum

2025-4-21 18:56 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list