|
二元分式极限
一般地,考虑
$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}$($m,n$为正整数,$p,q$为非负实数)
⑴ 当$m$和$n$不全为偶数时,极限不存在;
⑵ 当$m$和$n$全为偶数时,若$\frac{p}{m}+\frac{q}{n}>1$,则极限为0;若$\frac{p}{m}+\frac{q}{n}≤1$,则极限不存在.
证明
⑴ 不妨设$n$为奇数,选择路径$x^m+y^n=ax^k$($k>m$且$k>p+\frac{mq}n$),将$y=\left(ax^k-x^m\right)^{\frac1n}$代入得$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{\left(ax^k-x^m\right)^{\frac qn}}{ax^{k-p}}$,因为$k>p+\frac{mq}n$,所以极限不存在.
⑵ 当$p=0,q>n$时,$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{y^{n}}{x^{m}+y^{n}}x^{q-n}$,而$\frac{y^{n}}{x^{m}+y^{n}}\in(0,1)$,$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}}x^{q-n}=0$,故极限为0.
当$p=0,q=n$时$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{y^{n}}{x^{m}+y^{n}}$,极限不存在(沿$x=0$的极限为1,沿$y=0$的极限为0).
当$p=0,q<n$时,$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{y^{n}}{x^{m}+y^{n}}x^{q-n}$,而$\frac{y^{n}}{x^{m}+y^{n}}\in(0,1)$,$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}}x^{q-n}$不存在,故极限不存在.
下面设$pq\ne0$.那么$p>0,q>0$. 引理1.(Young不等式)设$a,b$均为正实数,且$p+q=1$,$0<p,q<1$,则$a^pb^q\le ap+bq$.
证明:设辅助函数$f(x)=a^{p} x^{1-p}-a p-(1-p) x, x \geqslant 0$.令$f^{\prime}(x)=a^{p} \cdot q x^{q-1}-q=0$得$x=a$.而$f^{\prime \prime}(x)=q(q-1) a^{p} \cdot x^{q-2}<0$.所以$f(a)=0$为最大值.$\quad\square$
引理2.$\displaystyle\lim_{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{\alpha} y^{\beta}}{x^{2}+y^{2}}$,其中$\alpha,\beta$均为正实数.
⑴ $\alpha+\beta\le2$时,极限不存在;
⑵ $\alpha+\beta>2$时,极限为0.
证明
⑴ $\alpha+\beta≤2$时,分下面两种情况:
①$\alpha+\beta=2$时,选择路径$y=kx$,则$\displaystyle\lim _{x \rightarrow 0^{+}\atop y \rightarrow 0^{+}} \frac{x^{\alpha} y^{\beta}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+}} \frac{x^{\alpha}(k x)^{2-\alpha}}{x^{2}+(k x)^{2}}=\lim _{x \rightarrow 0^{+}} \frac{k^{2-\alpha} x^{2}}{x^{2}\left(1+k^{2}\right)}=\frac{k^{2-\alpha}}{1+k^{2}}$取决于$k$,极限不存在.
②$\alpha+\beta<2$时,选择路径$y=k x^{\frac{2-\alpha}{\beta}}$,则$\displaystyle\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{\alpha} y^{\beta}}{x^{2}+y^{2}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}}\frac{k^{\beta} x^{\alpha} x^{2-\alpha}}{x^{2}+k^{2} x^{2 \cdot \frac{2-\alpha}{\beta}}}=\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{k^{\beta}}{1+k^{2} x^{2 \cdot \frac{2-\alpha}{\beta}-2}}=k^{\beta}$取决于$k$(因为$\frac{2-\alpha}{\beta}-2>0$),极限不存在.
⑵ $\alpha+\beta>2$时,根据Young不等式,$x^{\alpha} y^{\beta}=\left(x^{\alpha+\beta}\right)^{\frac{\alpha}{\alpha+\beta}} \cdot\left(y^{\alpha+\beta}\right)^{\frac{\beta}{\alpha+\beta}} \leqslant \frac{\alpha}{\alpha+\beta} x^{\alpha+\beta}+\frac{\beta}{\alpha+\beta} y^{\alpha+\beta}$,$0 \leqslant\frac{x^{\alpha} y^{\beta}}{x^{2}+y^{2}}\leqslant \frac{\alpha}{\alpha+\beta} \frac{x^{\alpha+\beta}}{x^{2}+y^{2}}+\frac{\beta}{\alpha+\beta} \frac{y^{\alpha+\beta}}{x^{2}+y^{2}}=\frac{\alpha}{\alpha+\beta} \frac{x^{2}}{x^{2}+y^{2}} x^{\alpha+\beta-2}+\frac{\beta}{\alpha+\beta} \frac{y^{2}}{x^{2}+y^{2}} y^{\alpha+\beta-2}$,因为$\frac{\alpha}{\alpha+\beta}\in(0,1),\frac{x^{2}}{x^{2}+y^{2}}\in(0,1),x^{\alpha+\beta-2}\to0$,所以$\frac{\alpha}{\alpha+\beta} \frac{x^{2}}{x^{2}+y^{2}} x^{\alpha+\beta-2}\to0$,同理$\frac{\beta}{\alpha+\beta} \frac{y^{2}}{x^{2}+y^{2}} y^{\alpha+\beta-2}\to0$,所以极限为0. 若$\frac{p}{m}+\frac{q}{n}>1$,令$x=u^{\frac{2}{m}}$,$y=v^{\frac{2}{n}}$,则$\lim _{x \rightarrow 0^{+} \atop y \rightarrow 0^{+}} \frac{x^{p} y^{q}}{x^{m}+y^{n}}=\lim _{u \rightarrow 0^{+} \atop v \rightarrow 0^{+}} \frac{u^{\frac{2 p}{m}} v^{\frac{2 q}{n}}}{u^{2}+v^{2}}$,根据引理2可得:
$\frac{2 p}{m}+\frac{2 q}{n}>2$,即$\frac{p}{m}+\frac{q}{n}>1$时,极限为0;
$\frac{2 p}{m}+\frac{2 q}{n} \leqslant 2$,即$\frac{p}{m}+\frac{q}{n} \leqslant 1$时,极限不存在. |
|