|
关于变元 $x, y, z$ 的任一轮换对称多项式 $f(x, y, z)$ 都可以表为关于变元
$$
\sigma_1=\sum x,
\sigma_2=\sum x y,
\sigma_3=\sum x y z,
\sigma_{31}=\sum x^2 y
$$的多项式.
例:将 $f(x, y, z)=x_1^3 x_2+x_2^3 x_3+x_3^3 x_1$ 用 $\sigma_1, \sigma_2, \sigma_3,\sigma_{31}$ 表示出来.
解:$f(x, y, z)$ 按字典排序法的最前项是 $\lambda x^{\alpha_1} y^{\alpha_2} z^{\alpha_3}$, $\alpha_1=3, \alpha_2=1, \alpha_3=0,$
$\because \alpha_1-\alpha_2>\alpha_2-\alpha_3$ 故令 $\rho_1\left(\sigma_1, \sigma_2, \sigma_3, \sigma_{31}\right)=$ $\sigma_1 \sigma_3$, 则
$$f_1\left(x_1, x_2, x_3\right)=f\left(x_1, x_2, x_3\right)-\rho_1\left(\sigma_1, \sigma_2, \sigma_3, \sigma_{31}\right)=-\left(\sum x_1^2 x_2 x_3+\sum x_1^2 x_2^2\right)$$
对于 $\sum x_1^2 x_2 x_3$, 令 $\rho_2\left(\sigma_1, \sigma_2, \sigma_3, \sigma_{31}\right)=\sigma_1 \sigma_3$, 易得 $\sum x_1^2 x_2 x_3=\sigma_1 \sigma_3$;
对于 $\sum x_1^2 x_2^2$, 令 $\rho_3\left(\sigma_1, \sigma_2, \sigma_3, \sigma_{31}\right)=\sigma_2^2$, 易得 $\sum x_1^2 x_2^2=\sigma_2^2-2 \sigma_1 \sigma_3$; 于是 $f\left(x_1, x_2, x_3\right)=f_1\left(x_1, x_2, x_3\right)+\rho_1\left(\sigma_1, \sigma_2, \sigma_3, \sigma_{31}\right)=\sigma_1 \sigma_{31}+\sigma_1 \sigma_3-\sigma_2^2$.
如何推广到 $n$ 元轮换对称多项式? |
|