Forgot password?
 Create new account
View 2710|Reply 9

[不等式] 与高斯函数有关的一道不等式

[Copy link]

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

longzaifei Posted at 2014-3-13 10:22:37 |Read mode
Last edited by longzaifei at 2014-3-13 10:55:00$m,n\in[0,1) $,证明:\[ [5m]+[5n]-[m]-[n]-[3m+n]-[3n+m]\ge0    \]

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-3-13 10:44:10
回复 1# longzaifei


这一大堆整数....你不觉得有没有那个取整都没区别么..........

48

Threads

77

Posts

778

Credits

Credits
778

Show all posts

 Author| longzaifei Posted at 2014-3-13 10:56:49
回复  longzaifei


这一大堆整数....你不觉得有没有那个取整都没区别么.......... ...
战巡 发表于 2014-3-13 10:44
不好意思,已经修改过来

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-13 12:08:53
Last edited by realnumber at 2014-3-13 22:23:00很笨拙的办法,
设$p\le 5m <p+1,q\le 5m <q+1,p,q\in \{0,1,2,3,4\}$
那么问题就是
$[5m]+[5n]=p+q$,
$3m+n<\frac{3p}{5}+\frac{q}{5}+\frac{4}{5}$,$[3m+n]\le [\frac{3p}{5}+\frac{q}{5}+\frac{4}{5}]$
$3n+m<\frac{3q}{5}+\frac{p}{5}+\frac{4}{5},[3n+m]\le [\frac{3q}{5}+\frac{p}{5}+\frac{4}{5}]$
分25类检验

53

Threads

308

Posts

2026

Credits

Credits
2026

Show all posts

踏歌而来 Posted at 2014-3-13 12:17:19
回复 4# longzaifei


    直接在1楼修改,效果不好。
   其他人也许想看看你的原始题目是什么样的,好增加一点经验呢。

0

Threads

29

Posts

353

Credits

Credits
353

Show all posts

删广告专用 Posted at 2014-3-13 12:19:34
回复 6# 踏歌而来
打错一个条件而已, 打错的时候题目毫无意义, 没有经验可言

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-13 15:08:48
Last edited by realnumber at 2014-3-14 08:48:00应该完成了,不过分类比较琐碎,以后继续找更简洁的做法.

$[5m]+[5n]\ge [3m+n]+[3n+m]$----------①
设$p\le 5m <p+1,q\le 5n <q+1,p,q\in \{0,1,2,3,4\}$
那么问题就是
$[5m]+[5n]=p+q$,
$3m+n<\frac{3p+q+4}{5}$
$3n+m<\frac{3q+p+4}{5}$
$[3m+n]\le [\frac{3p+q+4}{5}]$,$[3n+m]\le [\frac{3q+p+4}{5}]$
而$ [\frac{3p+q+4}{5}]+[\frac{3q+p+4}{5}]\le [\frac{4q}{5}+\frac{4p}{5}+\frac{8}{5}]=p+q+ [\frac{8}{5}-\frac{q}{5}-\frac{p}{5}]=p+q $(在$p+q\ge 4$成立)
当p+q=3时,$[\frac{3p+q+4}{5}]+[\frac{3q+p+4}{5}]=4+[\frac{2+2p}{5}]+[\frac{-2-2p}{5}]=3=p+q$
不妨设$p\ge q$,如此只需要单独检验①在$(p,q)\in \{ (2,0),(1,1),(1,0),(0,0)\}$情况下成立即可,
如此证明了,$[5m]+[5n]\ge [3m+n]+[3n+m]=[3m+n]+[3n+m]+[m]+[n]$.

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-13 15:52:59
类似于以上证明,可以证明,s,t,x,y为正整数,0<m,n<1
有$[(s+t)m]+[(x+y)n]\ge [sm+xn]+[tm+yn]$
闻到了排序不等式的味道
---就这样?

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-3-13 16:46:46
类似于以上证明,可以证明,s,t,x,y为正整数,0<m,n<1
有$[(s+t)m]+[(x+y)n]\ge [sm+xn]+[tm+yn]$
闻到了排序不等式的味道
---就这样?
realnumber 发表于 2014-3-13 15:52

这个好像不对……

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-3-13 21:32:55
刚才证明出错了,7楼已经修改,x<y得到$[x]\le [y]$,而不是$[x]<[y]$.
猜想:
s,t,x,y为正整数,0<m,n<1
有$[(s+t)m]+[(x+y)n]\ge [sm+(x-1)n]+[(t-1)m+yn]$

手机版Mobile version|Leisure Math Forum

2025-4-22 12:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list