Forgot password?
 Create new account
View 2213|Reply 7

[函数] 转发一个数列求和

[Copy link]

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-5-18 09:44:47 |Read mode
1.jpg
只会解m=2,3,可以降次,再构造复数,等比数列求和.
一般情景不会.

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-5-18 13:06:19
Last edited by tommywong at 2014-5-18 14:11:00让我保存一下进度

$\displaystyle\sum_{k=1}^n cos^m(\alpha+\frac{2k}{n}\pi)=\frac{1}{2^m}\sum_{k=1}^n [e^{i(\alpha+\frac{2k}{n}\pi)}+e^{-i(\alpha+\frac{2k}{n}\pi)}]^m=\frac{1}{2^m}\sum_{k=1}^n \sum_{r=0}^m C_m^r e^{i(\alpha+\frac{2k}{n}\pi)(m-2r)}$

$\displaystyle=\frac{1}{2^m}\sum_{r=0}^m C_m^r e^{i\alpha(m-2r)} \sum_{k=1}^n e^{\frac{2\pi ki}{n}(m-2r)}=\frac{1}{2^m}\sum_{r=0}^m C_m^r e^{i\alpha(m-2r)} \sum_{k=1}^n cos[\frac{2\pi k}{n}(m-2r)]=\frac{n}{2^m}\sum_{r=0}^m C_m^r e^{i(\alpha+\frac{2\pi}{n})(m-2r)} (n|m-2r)$

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-18 14:11:06
回复 1# realnumber

暂时没啥好办法,硬来吧
\[\sum_{k=1}^n \cos^m(\alpha+\frac{2k\pi}{n})=\sum_{k=1}^n\cosh^m(i(\alpha+\frac{2k\pi}{n}))=\frac{1}{2^m}\sum_{k=1}^n\sum_{p=0}^mC^p_me^{i(\alpha+\frac{2k\pi}{n})p}e^{-i(\alpha+\frac{2k\pi}{n})(m-p)}\]
\[=\frac{1}{2^m}\sum_{k=1}^n\sum_{p=0}^mC^p_me^{-i(\alpha+\frac{2k\pi}{n})(m-2p)}=\frac{1}{2^m}\sum_{p=0}^mC^p_m\sum_{k=1}^ne^{-i(\alpha+\frac{2k\pi}{n})(m-2p)}\]
\[=\frac{1}{2^m}\sum_{p=0}^mC^p_me^{-\frac{i(m-2p)(\pi+n(\alpha+\pi))}{n}}\frac{\sin((m-2p)\pi)}{\sin(\frac{(m-2p)\pi}{n})}\]

当$m$为奇数时,这玩意恒等于$0$,当$m$为偶数时,只有$m=2p$这一项不为0,易证此时$\frac{\sin((m-2p)\pi)}{\sin(\frac{(m-2p)\pi}{n})}=n$,有:
\[原式=\frac{nC^{\frac{m}{2}}_m}{2^m}\]

$\sin$那边的无非就是把上面$\alpha$用$\alpha+\frac{\pi}{2}$替换,反正上面也可以发现这个东西跟$\alpha$无关

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-18 14:19:19
回复 1# realnumber


其实之前在想另一个办法,结果卡住了,但还是可以给出一些结论
如果能够证明$f(m)=\sum_{k=1}^n\cos^m(\alpha+\frac{2k\pi}{n})$的值与$\alpha$无关,那可以得到递推式$f(m)=f(m-2)(1-\frac{1}{m})$

不过证明它为定值不是那么简单,最后还是绕不过去

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-5-18 14:36:06
回复 4# 战巡

n=1时不是有关吗?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-18 14:39:43
回复 5# tommywong


原题给出了$n\ge 2$

133

Threads

259

Posts

2333

Credits

Credits
2333

Show all posts

郝酒 Posted at 2014-5-18 20:01:54
战版用mathematica整整?
n不定的话能不能用Sum哦?

25

Threads

1020

Posts

110K

Credits

Credits
12672

Show all posts

战巡 Posted at 2014-5-19 00:37:02
回复 7# 郝酒


可以的啊........直接Sum[????,{k,1,n}]就行了,会得到带n的表达式,不过这里m不定就很难用MMC求出,因为MMC不知道m是什么,它会默认m为复数,但实际上只有正整数才能如此化简

手机版Mobile version|Leisure Math Forum

2025-4-22 12:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list