|
战巡
发表于 2014-5-18 14:11
回复 1# realnumber
暂时没啥好办法,硬来吧
\[\sum_{k=1}^n \cos^m(\alpha+\frac{2k\pi}{n})=\sum_{k=1}^n\cosh^m(i(\alpha+\frac{2k\pi}{n}))=\frac{1}{2^m}\sum_{k=1}^n\sum_{p=0}^mC^p_me^{i(\alpha+\frac{2k\pi}{n})p}e^{-i(\alpha+\frac{2k\pi}{n})(m-p)}\]
\[=\frac{1}{2^m}\sum_{k=1}^n\sum_{p=0}^mC^p_me^{-i(\alpha+\frac{2k\pi}{n})(m-2p)}=\frac{1}{2^m}\sum_{p=0}^mC^p_m\sum_{k=1}^ne^{-i(\alpha+\frac{2k\pi}{n})(m-2p)}\]
\[=\frac{1}{2^m}\sum_{p=0}^mC^p_me^{-\frac{i(m-2p)(\pi+n(\alpha+\pi))}{n}}\frac{\sin((m-2p)\pi)}{\sin(\frac{(m-2p)\pi}{n})}\]
当$m$为奇数时,这玩意恒等于$0$,当$m$为偶数时,只有$m=2p$这一项不为0,易证此时$\frac{\sin((m-2p)\pi)}{\sin(\frac{(m-2p)\pi}{n})}=n$,有:
\[原式=\frac{nC^{\frac{m}{2}}_m}{2^m}\]
$\sin$那边的无非就是把上面$\alpha$用$\alpha+\frac{\pi}{2}$替换,反正上面也可以发现这个东西跟$\alpha$无关 |
|