Forgot password?
 Create new account
View 2481|Reply 2

[不等式] 两个不等式求证

[Copy link]

45

Threads

51

Posts

484

Credits

Credits
484

Show all posts

等待hxh Posted at 2014-5-19 23:06:32 |Read mode
0519.jpg (不等式方面我依然非常菜,希望高手指点!)

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-5-23 15:11:38
这几天不舒服,居然漏了这个贴子没看到,现在补回一下。

第1题参考 artofproblemsolving.com/Forum/viewtopic.php?p … 070547&#p2070547

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-5-23 15:38:09
第二题懒得想巧法,由于次数低,直接去分母也不麻烦,当然,换个元数据好算些。
令 $x=3a$, $y=3b$, $z=3c$,则$a$, $b$, $c>0$, $a+b+c=1$,于是
\begin{align*}
\sum\frac1{9-xy}\leqslant\frac38&\iff\sum\frac1{1-ab}\leqslant\frac{27}8 \\
& \iff8\sum(1-bc)(1-ca)\leqslant27\prod(1-ab) \\
& \iff24-16\sum ab+8abc\sum a\leqslant27-27\sum ab+27abc\sum a-27(abc)^2 \\
& \iff3-11\sum ab+19abc-27(abc)^2\geqslant 0,
\end{align*}
显然 $abc\leqslant 1/27$,故只要证
\[3-11\sum ab+18abc\geqslant 0,\]

\[3(a+b+c)^3-11(a+b+c)(ab+bc+ca)+18abc\geqslant 0,\]
整理为
\[2\sum a^3-\sum a^2b-\sum ab^2+\sum a(a-b)(a-c)\geqslant 0,\]
显然成立。

手机版Mobile version|Leisure Math Forum

2025-4-22 12:53 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list