Forgot password?
 Create new account
View 1875|Reply 2

[数列] 数列通项求化简

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2014-5-21 22:33:15 |Read mode
$(a_{n+1}+k_1)(a_n+k_2)=k_3$的通项

$\displaystyle a_n=[(-\frac{m^2}{k_3})^{n-1} (\frac{1}{a_1+s}-\frac{m}{k_3+m^2})+\frac{m}{k_3+m^2}]^{-1}-s$

$\displaystyle s=\frac{k_1+k_2-\sqrt{(k_1-k_2)^2+4k_3}}{2},m=\frac{k_1-k_2-\sqrt{(k_1-k_2)^2+4k_3}}{2}$

例如:$(a_{n+1}-1)(a_n-1)=2,a_1=2$

$s=-1-\sqrt{2},m=-\sqrt{2}$

$\displaystyle a_n=\frac{4}{(-1)^n(4+3\sqrt{2})-\sqrt{2}}+1+\sqrt{2}$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-5-21 22:58:55
回复 1# tommywong
实际就是一阶分式线性递归数列嘛,用不动点方法、取倒数法,或构造等比数列(两个不动点不同)或等差数列(两个不动点相同)

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

 Author| tommywong Posted at 2014-5-22 08:30:48
$\displaystyle a_{n+1}=\frac{1}{a_n+k},s=\frac{k-\sqrt{k^2+4}}{2}$

$\displaystyle a_n=(1+s^2)[(-s^{-2})^{n-1}(\frac{1+s^2}{a_1+s}-s)+s]^{-1}-s$

手机版Mobile version|Leisure Math Forum

2025-4-22 12:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list