Forgot password?
 Create new account
View 2038|Reply 8

[函数] $\frac{f(x)}{f(y)}+\frac{f(1-x)}{f(1-y)} \le 2$,求$f(x)$

[Copy link]

418

Threads

1632

Posts

110K

Credits

Credits
11912

Show all posts

abababa Posted at 2014-6-25 08:11:00 |Read mode
$f(x)$定义在$(0, 1)$上且为实数,$f(x) > 0, f(\frac{1}{2}) = 1$,对任意$x,y \in (0,1)$都有$\frac{f(x)}{f(y)}+\frac{f(1-x)}{f(1-y)} \le 2$,求$f(x)$
这个我解出来$f(x) = 1$,不过感觉自己的做法有点麻烦,用了两次平均值不等式,想看看有没有简化点的方法
还有我发帖时说标题长度多于80字,是不是能放宽点呢?有时打上一些latex就很长了

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2014-6-25 10:05:49
回复 1# abababa


    $\frac{f(x)}{f(y)}+\frac{f(1-x)}{f(1-y)} \le 2,\frac{f(y)}{f(x)}+\frac{f(1-y)}{f(1-x)} \le 2$,两式相加,利用平均值不等式,可得$\frac{f(x)}{f(y)}=\frac{f(y)}{f(x)}$,从而$f(x)=f(y)$,即是常数函数。

425

Threads

1554

Posts

110K

Credits

Credits
11765

Show all posts

realnumber Posted at 2014-6-25 10:09:25
回复 2# 007


    鼓掌----

418

Threads

1632

Posts

110K

Credits

Credits
11912

Show all posts

 Author| abababa Posted at 2014-6-25 10:27:17
回复 2# 007
谢谢,这个简单,我还令y=1/2什么的,确实做麻烦了。

2

Threads

52

Posts

337

Credits

Credits
337

Show all posts

007 Posted at 2014-6-25 10:39:06
回复 4# abababa


    简单问题复杂化,我也经常这样……

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-6-25 11:45:55
老题

PS、标题长度限制是系统设置的,我也没啥办法

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-6-25 15:45:45
看起倒是很唬人

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2014-6-25 20:57:58
这种考思维的,特别这种夹一下的,真的很考人的

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2014-6-25 21:41:39
Last edited by hbghlyj at 2025-3-22 01:23:24回复 8# isee
,例如这里有几例:
  • Determine $x, y \inZ$ knowing that:
    \[
    \sqrt{x-1}+\sqrt{y-1} \geq \sqrt{x y}
    \]
  • 已知 $x<y<z<6$ ,解不等式组.
    \[
    \left\{\begin{array}{c}
    \frac{1}{y-x}+\frac{1}{z-y} \leq 2 \\
    \frac{1}{6-z}+2 \leq x
    \end{array}\right.
    \]
  • 求方程组 $\left\{\begin{array}{l}\left(1+4 x^2\right) y=4 z^2 \\ \left(1+4 y^2\right) z=4 x^2 \\ \left(1+4 z^2\right) x=4 y^2\end{array}\right.$ 的所有实数解.

手机版Mobile version|Leisure Math Forum

2025-4-22 12:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list