Forgot password?
 Create new account
View 2049|Reply 3

[几何] 求答案过程(06安徽竞赛初赛第6题)

[Copy link]

6

Threads

0

Posts

31

Credits

Credits
31

Show all posts

wdjlhx Posted at 2014-6-29 11:17:09 |Read mode
已知圆锥的顶点V和底面圆心O的连线垂直于底面,一个过VO中点M的平面与圆O相切,与圆锥的交线是一个椭圆,若圆O半径为1,则椭圆的短轴的长为多少???

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-6-30 17:49:30
大概还是玩求切法吧,可以参考这个贴子:bbs.pep.com.cn/thread-420881-1-1.html

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-7-2 15:21:39
还是写写过程吧

QQ截图20140702152141.gif

如图,由球切法知,$\triangle VAB$ 的内切圆与 $AB$ 的切点为椭圆焦点 $F$,则
\begin{align*}
AB&=2a, \\
AF&=a-c,
\end{align*}
由切线长有
\[AF=\frac{AB+AV-VB}2,\]
由梅氏定理有
\[\frac{VM}{MO}\frac{OB}{BC}\frac{CA}{AV}=1\riff CA=2AV\riff VB=3VA,\]
由以上式子可以得到
\begin{align*}
a&=\frac{AB}2, \\
c&=\frac{VB}3,
\end{align*}
所以
\begin{align*}
b^2&=a^2-c^2 \\
& =\frac{AB^2}4-\frac{VB^2}9 \\
& =\frac{VA^2+VB^2-2VA\cdot VB\cos \angle AVB}4-\frac{VB^2}9 \\
& =\frac{10VB^2-6VB^2(1-2\sin^2\angle BVO)}{36}-\frac{VB^2}9 \\
& =\frac13VB^2\sin^2\angle BVO \\
& =\frac13OB^2 \\
& =\frac13,
\end{align*}
即短轴长 $b=1/\sqrt3$。

700

Threads

110K

Posts

910K

Credits

Credits
94202
QQ

Show all posts

kuing Posted at 2014-7-2 15:25:37
不过感觉可能还有更简单的解法……

手机版Mobile version|Leisure Math Forum

2025-4-22 12:54 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list