for the first one,give you a hint. Using $$\frac{1}{x^2+x+1}=\frac{1-x}{1-x^3}$$ and then the geometric series.maybe you will get a series related to the digamma function or polygarithm.
Last edited by 青青子衿 at 2021-4-26 22:06:00某群一道积分:计算
\begin{align*}
\int_{0}^{1}{\frac{\ln\,\!x}{{{x}^{2}}+x+1}}\mathrm{d}x&=\dfrac{4\pi^3}{81\sqrt3}\\
\int_{0}^{1}{\frac{\ln\,\!x}{{{x}^{2}}-x-1}}\mathrm{d}x&=\dfrac{\pi^2}{5\sqrt5}\\
\end{align*}