Forgot password
 Register account
View 1484|Reply 2

一道矩阵的行列式不等式

[Copy link]

461

Threads

957

Posts

4

Reputation

Show all posts

青青子衿 posted 2017-3-1 22:05 |Read mode
\(\Large\bf 定理\,\normalsize{\text{8-1-2}}\):设\(\boldsymbol{M}\)与\(\boldsymbol{N}\)为任意\(m\times n\)矩阵,恒有不等式:
\[\large1-\sqrt{\displaystyle\det\left(\boldsymbol{I}+\boldsymbol{M}\boldsymbol{M}^H\right)-1}\cdot\sqrt{\displaystyle\det\left(\boldsymbol{I}+\boldsymbol{N}\boldsymbol{N}^H\right)-1}\leqslant\left|\det\left(\boldsymbol{I}+\boldsymbol{M}\boldsymbol{N}^H\right)\right|\]

2

Threads

15

Posts

1

Reputation

Show all posts

orzweb111 posted 2019-3-24 07:15
You asked this two years ago, I am not sure if you are still interested now.

Here is a proof. Clearly
$$\begin{pmatrix} I+MM^* & I+MN^*\\ I+NM^* & I+NN^*
          \end{pmatrix}\ge \begin{pmatrix} I & I\\ I & I
                    \end{pmatrix},$$ where $A\ge B$ means $A-B$ is positive semidefinite.

This gives $$\begin{pmatrix} \det(I+MM^*) & \det(I+MN^*)\\ \det(I+NM^*) & \det(I+NN^*)
          \end{pmatrix}\ge \begin{pmatrix} 1 & 1\\ 1 & 1
                    \end{pmatrix},$$
in other words, the matrix  $ \begin{pmatrix} \det(I+MM^*)-1 & \det(I+MN^*)-1\\ \det(I+NM^*)-1 & \det(I+NN^*)-1
          \end{pmatrix}$ is positive semidefinite. Taking determinant gives the desired result.

Rate

Number of participants 1威望 +1 Collapse Reason
业余的业余 + 1 学习。不会。欢迎!

View Rating Log

3208

Threads

7845

Posts

51

Reputation

Show all posts

hbghlyj posted 2025-4-12 09:55
math.stackexchange.com/questions/5003378
if $m\gt n$ you can just append columns of zeros to each of $M$ and $N$; this does not change $I + MM^*$ or $I+MN^*$ etc.  If $m\lt n$ I would probably try instead to work with $M^*M$, $N^*M$, $M^*N$ and $N^*N$ and then re-use the prior sentence's argument (i.e. appending columns of zeros to $M^*$ and $N^*$).
学习。不会

Quick Reply

Advanced Mode
B Color Image Link Quote Code Smilies
You have to log in before you can reply Login | Register account

$\LaTeX$ formula tutorial

Mobile version

2025-7-12 19:30 GMT+8

Powered by Discuz!

Processed in 0.013663 seconds, 23 queries