|
0是可去间断点,在0无穷次可导
战巡 发表于 2013-10-27 10:20
Laurent series
\[\frac{1}{\sin^2(x)}=\frac{1}{x^2}+\frac{1}{3}+\frac{x^2}{15}+\frac{2x^4}{189}+...\] 这个问题类似于
H. A. Priestley - Introduction to Integration - Clarendon Press; Oxford University Press, 1997
Exercise 2.11
On $[0,\pi/2]$ define$\DeclareMathOperator{\cosec}{cosec}$
\[f(x)=\begin{cases}\cosec x-x^{-1}&(x\ne0)\\0&(x=0)\end{cases}\qquad g(x)=\begin{cases}\cot x-x^{-1}&(x\ne0)\\0&(x=0)\end{cases}\]
Use L'Hôpital's rule to prove that $f$ and $g$ belong to $C[0,\pi/2]$. Prove further that $f\in C^1[0,\pi/2]$.

$$\lim_{x\to 0}g(x)=\lim_{x\to 0}\frac{x \cos (x)-\sin(x)}{x\sin(x)}\overset{\text{L'Hôpital}}=\lim_{x\to0}\frac{-x\sin(x)}{x\cos(x)+\sin(x)}=-\lim_{x\to0}\frac1{\cot(x)+x^{-1}}=0$$
所以$g$在0处连续, 所以$g$在$[0,\pi/2]$连续.$$\lim_{x\to 0}f(x)=\lim_{x\to 0}\frac{1-\frac{\sin(x)}x}{\sin(x)}=\lim_{x\to 0}\frac{O(x^2)}{O(x)}=0$$
所以$f$在0处连续, 所以$f$在$[0,\pi/2]$连续. 最后要证明$f\in C^1[0,\pi/2]$
$$f'(0)=\lim_{x\to 0}\frac{f(x)}x=\lim_{x\to 0}\frac{1-\frac{\sin (x)}x}{x\sin x}=\frac16$$
导函数在0的极限
$$f'(x)=\lim_{x\to 0}\frac{1-x^2 \cot (x) \csc (x)}{x^2}=\frac16$$
证毕.
$\cot(x)-\frac1x$又见这帖15# |
|