Forgot password?
 Create new account
Author: kuing

[函数] 某网友问的一道函数不等式 $x/\sqrt{1+3x^2}\le\sin x$

[Copy link]

3151

Threads

8499

Posts

610K

Credits

Credits
66226
QQ

Show all posts

hbghlyj Posted at 2023-4-16 07:26:08

0是可去间断点,在0无穷次可导

战巡 发表于 2013-10-27 10:20
Laurent series
\[\frac{1}{\sin^2(x)}=\frac{1}{x^2}+\frac{1}{3}+\frac{x^2}{15}+\frac{2x^4}{189}+...\]
kuing 发表于 2013-11-4 07:05
回复 18# 其妙

问题还没解决……怎么证明没有负系数……
这个问题类似于
H. A. Priestley - Introduction to Integration - Clarendon Press; Oxford University Press, 1997
Exercise 2.11
On $[0,\pi/2]$ define$\DeclareMathOperator{\cosec}{cosec}$
\[f(x)=\begin{cases}\cosec x-x^{-1}&(x\ne0)\\0&(x=0)\end{cases}\qquad g(x)=\begin{cases}\cot x-x^{-1}&(x\ne0)\\0&(x=0)\end{cases}\]
Use L'Hôpital's rule to prove that $f$ and $g$ belong to $C[0,\pi/2]$. Prove further that $f\in C^1[0,\pi/2]$.

$$\lim_{x\to 0}g(x)=\lim_{x\to 0}\frac{x \cos (x)-\sin(x)}{x\sin(x)}\overset{\text{L'Hôpital}}=\lim_{x\to0}\frac{-x\sin(x)}{x\cos(x)+\sin(x)}=-\lim_{x\to0}\frac1{\cot(x)+x^{-1}}=0$$
所以$g$在0处连续, 所以$g$在$[0,\pi/2]$连续.$$\lim_{x\to 0}f(x)=\lim_{x\to 0}\frac{1-\frac{\sin(x)}x}{\sin(x)}=\lim_{x\to 0}\frac{O(x^2)}{O(x)}=0$$
所以$f$在0处连续, 所以$f$在$[0,\pi/2]$连续. 最后要证明$f\in C^1[0,\pi/2]$
$$f'(0)=\lim_{x\to 0}\frac{f(x)}x=\lim_{x\to 0}\frac{1-\frac{\sin (x)}x}{x\sin x}=\frac16$$
导函数在0的极限
$$f'(x)=\lim_{x\to 0}\frac{1-x^2 \cot (x) \csc (x)}{x^2}=\frac16$$
证毕.

$\cot(x)-\frac1x$又见这帖15#

700

Threads

110K

Posts

910K

Credits

Credits
94197
QQ

Show all posts

 Author| kuing Posted at 2024-11-3 00:40:40
刚才在知乎看到一帖:zhihu.com/question/2783150312,马上想起本帖

Comment

十多年了~  Posted at 2024-11-3 16:32

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-3 01:20:19
以前写过类似的,我是转换为单调形式来证明.
$$f(x)=\frac{1}{\sin^2x}-\frac{1}{x^2},f'(x)=2\left(\frac{\sin^3x-x^3\cos x}{x^3\sin^3x}\right)$$
令 $g(x)=\sqrt[3]{\sin^2x\tan x}-x$
$$g'(x)=\frac{2\sin^2x+\tan^2x}{3\left(\sin^2x\tan x\right)^{\frac23}}-1>0$$
$$\Longleftarrow (2\sin^2x+\tan^2x)^3-27\sin^4x\tan^2x=\sin^4x\tan^6x(5+4\cos2x)>0$$
故 $f(x)$ 在 $(0,\pi)$ 上单调递增.
主楼要证的由 $f(\frac{\pi}{2})=1-\frac{4}{\pi^2}<3$ 可得
另外 $$\lim_{x\rightarrow0}f(x)=\frac13$$
可得 $\dfrac{1}{\sin^2x}-\dfrac{1}{x^2}>\dfrac13$ 即22# 链接中的左端.

1

Threads

104

Posts

1771

Credits

Credits
1771

Show all posts

Aluminiumor Posted at 2024-11-3 01:28:21
翻到以前写的某道题(不是我出的),利用 $\sin\sqrt{\frac{3}{x}}<\sqrt{\frac{3}{x+1}}$ ($x$ 充分大)证的。
1.png

手机版Mobile version|Leisure Math Forum

2025-4-22 09:55 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list