Forgot password?
 Create new account
View 3016|Reply 7

[不等式] 含根号比大小

[Copy link]

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

tommywong Posted at 2013-10-30 18:26:31 |Read mode
比较$2+\sqrt[3]{5}$和$\sqrt{7}+\sqrt[5]{2}$

即求证$2-\sqrt{7}+\sqrt[3]{5}-\sqrt[5]{2}<0$或$\displaystyle\frac{2+\sqrt[3]{5}}{\sqrt{7}+\sqrt[5]{2}}<1$
现充已死,エロ当立。
维基用户页:https://zh.wikipedia.org/wiki/User:Tttfffkkk
Notable algebra methods:https://artofproblemsolving.com/community/c728438
《方幂和及其推广和式》 数学学习与研究2016.

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-30 20:33:30
baoli
由泰勒得当 $x>1$ 时 $\sqrt[5]x>1+(x-1)/5-2(x-1)^2/25$,代入 $x=2$ 得 $\sqrt[5]2>28/25$,又 $\sqrt7=2.64\ldots>2.6=13/5$,所以 $\sqrt7+\sqrt[5]2>93/25$,于是只要证 $43/25>\sqrt[3]5$,即 $79507/15625>5$,显然成立。

2

Threads

8

Posts

59

Credits

Credits
59

Show all posts

keypress Posted at 2013-10-30 21:23:14
KK,你的解答似乎公式没有调整好,可读性较差啊——作废
sorry,看到改好了

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2013-10-30 21:36:10
回复 3# keypress

我刚才回完贴就没修改过了啊,显示不出有可能是mathjax没加载成功,这几天mathjax的那个链接是有点慢。

84

Threads

436

Posts

5432

Credits

Credits
5432

Show all posts

 Author| tommywong Posted at 2013-10-31 07:02:23
以下是何方程利用分数增加精确度的解法,但似乎不易测得:

$18<\sqrt{343}<19,11<\sqrt[3]{1715}<12,8<\sqrt[5]{33614}<9$

$\displaystyle\frac{18}{7}<\sqrt{7}<\frac{19}{7}$

$\displaystyle\frac{11}{7}<\sqrt[3]{5}<\frac{12}{7}$

$\displaystyle\frac{8}{7}<\sqrt[5]{2}<\frac{9}{7}$

$14-(18,19)+(11,12)-(8,9)=(-3,0)<0$

7

Threads

349

Posts

2809

Credits

Credits
2809

Show all posts

睡神 Posted at 2013-10-31 11:16:09
额…何方程…

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2013-10-31 12:07:52
回复 6# 睡神

我也发现了

87

Threads

2383

Posts

110K

Credits

Credits
13325

Show all posts

其妙 Posted at 2013-10-31 23:01:52
向方程?

手机版Mobile version|Leisure Math Forum

2025-4-21 13:57 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list