|
Last edited by hbghlyj at 2025-4-6 11:00:23已知 $\lambda \inR$,一个项数为 $N$ 的有穷实数列 $\left\{a_k\right\}(N \geq 3)$ 称为"$J_\lambda$ 数列",若其满足下列三个条件:
- $a_1<a_2, a_{N-1}>a_N$ ;
- 当 $1 \leq k \leq N-1$ 时,$a_k \neq a_{k+1}$ ;
- 当 $1 \leq k \leq N-1$ 时,$a_{k+1}=\left\{\begin{array}{ll}a_k+\lambda a_{k+2} & a_k<a_{k+1} \\ a_k-\lambda a_{k-1} & a_k>a_{k+1}\end{array}\right.$ .
(1)若存在 $\lambda$ 使得数列 $1, ~ x, ~ 2$ 为"$J_i$ 数列",求 $x$ 的值;
(2)已知存在有穷等比数列为"$J_2$ 数列",求实数 $\lambda$ 的取值范围;
(3)设 $\left\{a_k\right\}$ 是各项均为正整数的 $2^{11}+1$ 项数列,$a_1=7, a_{2^{11}+1}=9$ ,且当 $0 \leq k \leq 10$ 时,以 $b_j=a_{2^t, j+1}$ 为通项的数列 $\left\{b_j\right\} \quad\left(0 \leq j \leq 2^{11-k}, j \inN\right)$ 都是"$J_1$ 数列",求数列 $a_k$ 最大项的值. |
|