|
本帖最后由 hbghlyj 于 2025-3-4 01:49 编辑 P1.$\sin (x+y)=\cos (x-y)⇒$
Either $x+y=x-y+2kπ(⇒y=kπ)$ or $x+y=-x+y+2kπ(⇒x=kπ)$
画图,和半径为$498.75\pi$的圆有$4(498\times2+1)=3988$个交点.
P2.由$(x-2 \cos (75^{\circ}))^2+(y-2 \sin (75^{\circ}))^2=9\atop x^2+y^2=1$解得$(x,y)=\left(\frac{1}{4} \left(\sqrt{2}-\sqrt{6}\right),\frac{1}{4} \left(-\sqrt{2}-\sqrt{6}\right)\right)$,故$θ=195\du$.
P3.由$\mathrm{m} \angle B D C=2 \mathrm{~m} \angle A$得$AD=BD=1$,由Stewart定理得$2^2×1+AB^2×2=1^2×3+2×1×3⇒AB=\frac{\sqrt{\frac{3}{2}}}{2}$
$\sin A=\sqrt{1-\left(\frac{3^2+\frac{5}{2}-2^2}{2×3×\sqrt{\frac{5}{2}}}\right)^2}=\frac{\sqrt{3/2}}2$
P4.好麻烦
P5.(原帖)$$
y = \cos\left(\frac{2π}{7}\right)+\cos\left(\frac{4π}{7}\right)+\cos\left(\frac{6π}{7}\right)
$$
Dirichlet kernel:
$$
1+2\sum_{k=1}^{n}{\cos(kx)} = \frac{\sin((n+\frac{1}{2})x)}{\sin(x/2)}
$$
For $x=\frac{2\pi}{7},n=3$:
$$
1+2y = \frac{\sin((3+\frac{1}{2})\frac{2\pi}{7})}{\sin(\frac{2\pi}{7}/2)}=\frac{\sin(\pi)}{\sin(\frac{2\pi}{7}/2)}=0
$$
$$
1+2y =0
$$
$$
y =-\frac{1}{2}
$$
第二种方法:
$$
x = \cos\left(\frac{2π}{7}\right)\cos\left(\frac{4π}{7}\right)\cos\left(\frac{6π}{7}\right)
$$
$$
\cos\left(\frac{6π}{7}\right)=-\cos\left(\frac{π}{7}\right)
$$
$$
x = -\cos\left(\frac{2π}{7}\right)\cos\left(\frac{4π}{7}\right)\cos\left(\frac{π}{7}\right)
$$
Viète's infinite product:
$$
\prod_{n=1}^{\infty}\cos\left(\frac{\theta}{2^n}\right)=\frac{\sin(\theta)}{\theta}
$$
For $\theta_1=\frac{8\pi}{7}$:
$$
\frac{\sin(\theta_1)}{\theta_1}=\cos\left(\frac{4π}{7}\right)\cos\left(\frac{2π}{7}\right)...
$$
For $\theta_2=\frac{\pi}{7}$:
$$
\frac{\sin(\theta_2)}{\theta_2}=\cos\left(\frac{π}{2\times7}\right)\cos\left(\frac{π}{4\times7}\right)...
$$
Combining those together:(因为$\frac{8\pi}7=2^3\cdot\frac{\pi}7$,所以就像等比数列求和的错位相消,差3位正好抵消)
$$
\frac{\sin(\theta_1)}{\theta_1}=\cos\left(\frac{4π}{7}\right)\cos\left(\frac{2π}{7}\right)\cos\left(\frac{π}{7}\right)\frac{\sin(\theta_2)}{\theta_2}
$$since $\sin(\theta_1)=-\sin(\theta_2)$
$$
\frac{\theta_2}{\theta_1}=-\cos\left(\frac{4π}{7}\right)\cos\left(\frac{2π}{7}\right)\cos\left(\frac{π}{7}\right)=x
$$
$$
x = \frac{1}{8}
$$
P6.由三倍角公式,$\sin 25^{\circ} \sin 35^{\circ} \sin 85^{\circ}=\frac14\sin75\du=\frac{\sqrt{3}+1}{8 \sqrt{2}}$
P7.$(\sin 3 \theta)(\sin 3 \theta-\cos \theta)=(\sin \theta)(\sin \theta-\cos 3 \theta)$
$⇒\sin6θ=2\sin2θ$
$⇒3 \sin2θ-4 \sin ^32θ=2\sin2θ$
$⇒(\sin2θ)(1-2\sin2θ)(1+2\sin2θ)=0$
$⇒θ=0,\fracπ{12},\frac{5π}{12},\fracπ2,\frac{7π}{12},\frac{11π}{12},π$
P8.$\sin 10^{\circ} \sin 30^{\circ} \sin 50^{\circ} \sin 70^{\circ}={\sin75\du-\sin5\du\over2\cos5\du}$
P9.$(5 \sin A+3 \cos B)^2+(5 \cos A+3 \sin B)^2=50⇒\sin C=\sin(A+B)=\frac{8}{15}$
P10.$\cos \left(\frac{39 x}{2}\right)=\cos \left(\frac{x}{2}\right)⇒$ either $\frac{39x}2=\frac{x}2+2kπ(⇒x=\frac{2kπ}{19})$ or $\frac{39x}2=-\frac{x}2+2kπ(⇒x=\frac{kπ}{10})⇒\sin x$ has values: $0,\sin\frac{π}{19},\sin\frac{2π}{19},⋯,\sin\frac{9π}{19},\sin\frac{π}{10},\sin\frac{2π}{10},\sin\frac{3π}{10},\sin\frac{4π}{10},1$. |
|