Forgot password?
 Create new account
View 100|Reply 0

∑sinc(k)^2

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2022-5-21 01:48:54 |Read mode
math.stackexchange.com/questions/331404/how-t … ac-sin/582932#582932 How to prove this identity? $$\pi=\sum_{k=-\infty}^{\infty}\left(\dfrac{\sin(k)}{k}\right)^{2}$$ Find a function whose Fourier coefficients are $\sin{k}/k$. Then evaluate the integral of the square of that function. To wit, let $$f(x) = \begin{cases} \pi & |x|<1\\0&|x|>1 \end{cases}$$ Then, if $$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{-i k x}$$ then $$c_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: f(x) e^{i k x} = \frac{\sin{k}}{k}$$ By Parseval's Theorem: $$\sum_{k=-\infty}^{\infty} \frac{\sin^2{k}}{k^2} = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: |f(x)|^2 = \frac{1}{2 \pi} \int_{-1}^{1} dx \: \pi^2 = \pi $$ ADDENDUM This result is easily generalizable to $$\sum_{k=-\infty}^{\infty} \frac{\sin^2{a k}}{k^2} = \pi a$$ where $a \in[0,\pi)$, using the function $$f(x) = \begin{cases} \pi & |x|< a\\0&|x|>a \end{cases}$$ Then, if $$f(x) = \sum_{k=-\infty}^{\infty} c_k e^{-i k x}$$ then $$c_k = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: f(x) e^{i k x} = \frac{\sin{ak}}{k}$$ By Parseval's Theorem: $$\sum_{k=-\infty}^{\infty} \frac{\sin^2{ak}}{k^2} = \frac{1}{2 \pi} \int_{-\pi}^{\pi} dx \: |f(x)|^2 = \frac{1}{2 \pi} \int_{-a}^a dx \: \pi^2 = \pi a$$ Corollary $$\sum_{n = 1}^{\infty}{\sin n \over n} = \frac12\left(\sum_{n = -\infty}^{\infty}{\sin n \over n} - 1\right)$$ yields $$\sum_{n = 1}^{\infty}{\sin n \over n} = \frac12(\pi - 1)$$

手机版Mobile version|Leisure Math Forum

2025-4-21 13:58 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list