|
Absolutely integrable function
For a real-valued function, since\[\int |f(x)|\,dx=\int f^{+}(x)\,dx+\int f^{-}(x)\,dx\]
where\begin{array}l
f^{+}(x)=\max(f(x),0),\\f^{-}(x)=\max(-f(x),0)\end{array}both $\int f^{+}(x)\,dx$ and $\int f^{-}(x)\,dx$ must be finite. In Lebesgue integration, this is exactly the requirement for any measurable function $f$ to be considered integrable, with the integral then equaling $\int f^{+}(x)\,dx-\int f^{-}(x)\,dx$, so that in fact "absolutely integrable" means the same thing as "Lebesgue integrable" for measurable functions.
Absolute Value of Riemann Integrable Function
如果 $f$ 在某个点是连续的,那么 $|f|$ 在那里也是连续的。然后可以使用“一个函数是 Riemann 可积的,当且仅当它的不连续点集是一个零测集”这个定理。
但这个定理是一个相当笨重的工具。一种更自然的方法是观察对于区间的每个分割 $P$,根据三角不等式,上下和 $U,L$ 满足
$$
U(|f|,P)-L(|f|,P)\le U(f,P)-L(f,P)
$$ |
|