Forgot password?
 Create new account
View 108|Reply 1

[几何] Adobe PDF圖標

[Copy link]

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2024-2-11 03:27:58 |Read mode

好像是一条圆内螺线 (Hypocycloid).

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

 Author| hbghlyj Posted at 2024-2-11 03:30:58
取一条与三角形各边有两个交点的锥线,它的等角共轭像是个四次曲线,三角形的顶点是三个二重点
特别地,取正三角形,把它的内切圆的半径扩大,然后作出这个圆的等角共轭像,是一条圆内螺线 (Hypocycloid).
\begin{cases}x=\cos(t) - k\cos(2t)\\y=\sin(t) + k\sin(2t)\end{cases}
消去t变为
$$(k^2-2 k^4)x^2+2 k^2 x^2 y^2+k^2 y^4+2 k x^3-6 k x y^2+(k^2+1)x^2+(k^2+1-2 k^4)y^2+(k^6-3 k^4+3 k^2-1)=0$$

手机版Mobile version|Leisure Math Forum

2025-4-21 14:28 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list