Forgot password?
 Create new account
View 3064|Reply 12

[数论] 来自某教师群的分母最小问题

[Copy link]

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

kuing Posted at 2015-6-17 01:18:48 |Read mode
【师长】深圳王老师(5234*****) 17:13:21
哪位老师说一下第六题考什么?
QQ图片20150617004153.jpg

印象中,求满足 $\alpha<p/q<\beta$ 的最小分母 $q$ 的一般方法会用到连分数,但由旁边的题来看这似乎只是一份普通的高中练习题,怎么会涉及连分数?难道有取巧的办法?试了一下好像还真是这样。

依题意得 $0.198<p/q<0.199$,即 $99/500<p/q<199/1000$,即 $500p>99q$ 且 $199q>1000p$,
于是可设 $500p-99q=u$, $199q-1000p=v$,其中 $u$, $v$ 为正整数,消去 $p$ 得
\[q=2u+v,\]
代回去得
\[p=\frac{199u+99v}{500}=\frac{100u+99(u+v)}{500},\]
由此可见必须有 $100\mid(u+v)$(否则不可能约掉两个零),故此 $u+v\geqslant100$,所以
\[q\geqslant100+u\geqslant101,\]
等号成立当且仅当 $u+v=100$ 且 $u=1$,即 $u=1$, $v=99$,此时 $p=20$, $q=101$ 确实满足题意,所以 $q$ 的最小值为 $101$,此时 $p=20$。

Related collections:

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2015-6-17 03:02:28
Last edited by 乌贼 at 2015-6-17 03:58:00\[ \dfrac{198}{1000}<\dfrac{p}{q}<\dfrac{199}{1000} \riff\dfrac{1000}{199}<\dfrac{q}{p}<\dfrac{1000}{198}\riff\dfrac5{199}<\dfrac{q-5p}{p}<\dfrac{10}{198}\riff\]
\[\dfrac{1}{39.8}<\dfrac{q-5p}{p}<\dfrac{1}{19.8}\riff q-5p=1,q-5p=20\riff p=20,q=101\]

2

Threads

465

Posts

6357

Credits

Credits
6357
QQ

Show all posts

爪机专用 Posted at 2015-6-17 03:17:00
回复 2# 乌贼

后面是怎么推出p=20的?

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2015-6-17 03:33:08
Last edited by 乌贼 at 2015-6-17 03:46:00回复 3# 爪机专用
  举个例子 \[ \dfrac17 <\dfrac{a}{b}<\dfrac13\riff a=1,b=4\]
先得出$ a=1 $,再得出$ b=4 $
只有$a=1$,$b$是大于$3$的最小整数时,$a+b$才取得最小值

61

Threads

980

Posts

110K

Credits

Credits
10117

Show all posts

乌贼 Posted at 2015-6-17 05:52:58
回复 4# 乌贼
或者\[ \dfrac1{39.8}<\dfrac{q-5p}{p}<\dfrac1{19.8} \]令:$ q-5p=k,(k=1,2,3,\cdots ) $
再令:$ (19.8k) $是大于$ 19.8k $的最小整数,对于任意的$ k $有,
$ (q-5p+p)_\min =k+(19.8k) $,\[ (q+p)_\min=k+5(19.8k)+(19.8k)\geqslant 1+6\times 20=121 \]当且仅当$ k=1 $时成立。

1

Threads

81

Posts

561

Credits

Credits
561

Show all posts

活着&存在 Posted at 2015-6-17 09:27:37
Last edited by hbghlyj at 2025-3-21 23:37:52\begin{aligned}
& \frac{198}{1000}<\frac{p}{q}<\frac{199}{1000} \Rightarrow \frac{1000 p}{199}<q<\frac{1000 p}{198} \\
& \Rightarrow \frac{5 p}{199}<q-5 p<\frac{10 p}{198}\left(p, q \in N^{+}\right) \\
& \Rightarrow \frac{5 p}{199} \text { 与 } \frac{10 p}{198} \text { 之间有整数, } p \text { 最小是 } 20 . \\
& \Rightarrow P=20 \text { 时, } q \text { 最小, } q=5 p+1=101 .
\end{aligned}

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2015-6-17 14:12:39
$\dfrac{198}{1000}<\dfrac{p}{q}<\dfrac{199}{1000}$,这样的不等式,当$p,q$为正整数时,初一就有见,好像多数时候是竞赛的。

曾经解过类题:kuing.cjhb.site/forum.php?mod=viewthread& … ;highlight=%E9%94%99,最后也是转化成这楼了。。。

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2015-6-17 16:15:27
圆奶乳齿,看来我那解法不值一提了……

700

Threads

110K

Posts

910K

Credits

Credits
94177
QQ

Show all posts

 Author| kuing Posted at 2015-6-17 16:27:13
深圳王老师(5234*****) 14:30:06
QQ图片20150617162741.jpg

67

Threads

435

Posts

4269

Credits

Credits
4269

Show all posts

hejoseph Posted at 2015-6-17 20:34:09
这是这类问题的最一般方法:
因为
\begin{align*}
\frac{198}{1000}=\frac{1}{5+\frac{1}{19+\frac{1}{1+\frac{1}{4}}}}\\
\frac{199}{1000}=\frac{1}{5+\frac{1}{39+\frac{1}{1+\frac{1}{4}}}}\end{align*}
所以
\[
\frac{p}{q}=\frac{1}{5+\frac{1}{20}}=\frac{20}{101}
\]
就算两边都是无理数这个方法也适用

9

Threads

55

Posts

374

Credits

Credits
374

Show all posts

goft Posted at 2015-6-17 23:17:12
\[\dfrac{198}{1000}=\dfrac{200-2}{1000} =\dfrac{1}{5}\times \dfrac{99}{100}<\dfrac{1}{5}\times \dfrac{100}{101} =\dfrac{20}{101}\]
$ 为了使分母最小,则应该把5约分掉,每次增加1 $

801

Threads

4889

Posts

310K

Credits

Credits
36169

Show all posts

isee Posted at 2015-6-17 23:18:46
这是这类问题的最一般方法:
因为
\begin{align*}
\frac{198}{1000}=\frac{1}{5+\frac{1}{19+\frac{1}{1+\f ...
hejoseph 发表于 2015-6-17 20:34

    三个连分数,学习了

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2017-1-10 22:11:05
马一下。

手机版Mobile version|Leisure Math Forum

2025-4-21 01:27 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list