|
Brunn-Minkowski不等式
lib-pku 实变期末.jpg
六、(8分) 设 $A, B, A+B \subset \mathbb{R}^2$ 均为可测集,证明以下Brunn-Minkowski不等式:
$$
m(A+B)^{\frac{1}{2}} \geq m(A)^{\frac{1}{2}}+m(B)^{\frac{1}{2}},
$$
Real Analysis (Princeton Lectures in Analysis, Volume 3) Elias M. Stein, Rami Shakarchi, page 36
\[\tag8m(A + B)^{1/d} ≥ m(A)^{1/d} + m(B)^{1/d}.\]
在继续 (8) 的证明之前,我们需要提及出现的技术障碍。 虽然我们可以假设 $A$ 和 $B$ 是可测的,但这并不能推断出 $A+B$ 是可测的(见下一章的练习 13)。然而,很容易看出,当 $A$ 和 $B$ 是闭集,或者其中一个是开集时(参见练习 19),这种困难不会发生。考虑到上述条件,我们可以陈述主要结果。
定理 5.1 设 $A$ 和 $B$ 是 $\mathbb R^d$ 中的可测集,且它们的和 $A+B$ 也是可测的,那么不等式(8)成立。
让我们首先检查,当 $A$ 和 $B$ 是具有边长 $(a_j)_{j=1}^d$ 和 $(b_j)_{j=1}^d$ 的矩形时,不等式(8)变成
$$\tag9\left(\prod_{j=1}^{d}\left(a_{j}+b_{j}\right)\right)^{1 / d} \geq\left(\prod_{j=1}^{d} a_{j}\right)^{1 / d}+\left(\prod_{j=1}^{d} b_{j}\right)^{1 / d}$$
通过齐次性,我们可以将其简化为对每个 $j$ 有 $a_j + b_j = 1$ 的情况。事实上,若将 $a_j,b_j$ 替换为 $λ_j a_j , λ_j b_j$,
$λ_j > 0$,则 (9) 的两边都乘以 $(λ_1λ_2 · · · λ_d)^{1/d}$。然后我们只需要选择 $λ_j = (a_j + b_j )^{−1}$。通过这种简化,由 AM-GM 不等式能直接推出不等式 (9):
$$\left(\prod_{j=1}^{d} a_{j}\right)^{1 / d}+\left(\prod_{j=1}^{d} b_{j}\right)^{1 / d}\le\frac1d\sum_{j=1}^da_j+\frac1d\sum_{j=1}^db_j=1$$
接下来我们转向每个 $A$ 和 $B$ 都是有限多个矩形的并集的情况,这些矩形的内部是不相交的。在这种情况下,我们将通过对 $A$ 和 $B$ 中的矩形总数 $n$ 应用归纳来证明 (8)。这里需要注意的是,当我们独立平移 $A$ 和 $B$ 时,不等式不变。事实上,用$A + h$代替$A$,用$B + h'$代替$B$,用$A + B +h + h'$代替$A + B$,相应的测度保持不变。我们在覆盖 $A$ 的集合中选择一对不相交的矩形 $R_1$ 和 $R_2$,我们注意到它们可以被坐标超平面分开:
我们可以假设对于某些 $j$,在移动适当的 $h$ 之后,$R_1$ 位于 $A_− = A ∩ \{x_j ≤ 0\}$,$R_2$ 位于 $A_+ = A ∩ \{0 ≤ x_j \}$。还要注意 $A_+$ 和 $A_−$ 都至少比 $A$ 少一个矩形,并且 $A = A_− ∪ A_+$。
We next translate $B$ so that $B_{-}=B \cap\left\{x_j \leq 0\right\}$ and $B_{+}=B \cap\{x_j \geq0\}$ satisfy
\[
\frac{m\left(B_{\pm}\right)}{m(B)}=\frac{m\left(A_{\pm}\right)}{m(A)} .
\]
However, $A+B \supset\left(A_{+}+B_{+}\right) \cup\left(A_{-}+B_{-}\right)$, and the union on the right is essentially disjoint, since the two parts lie in different half-spaces. Moreover, the total number of rectangles in either $A_{+}$ and $B_{+}$, or $A_{-}$ and $B_{-}$ is also less than $n$. Thus the induction hypothesis applies and
\begin{aligned}
m(A+B) & \geq m\left(A_{+}+B_{+}\right)+m\left(A_{-}+B_{-}\right) \\
& \geq\left(m\left(A_{+}\right)^{1 / d}+m\left(B_{+}\right)^{1 / d}\right)^d+\left(m\left(A_{-}\right)^{1 / d}+m\left(B_{-}\right)^{1 / d}\right)^d \\
& =m\left(A_{+}\right)\left[1+\left(\frac{m(B)}{m(A)}\right)^{1 / d}\right]^d+m\left(A_{-}\right)\left[1+\left(\frac{m(B)}{m(A)}\right)^{1 / d}\right]^d \\
& =\left(m(A)^{1 / d}+m(B)^{1 / d}\right)^d,
\end{aligned}which gives the desired inequality (8) when $A$ and $B$ are both finite unions of rectangles with disjoint interiors.
Next, this quickly implies the result when $A$ and $B$ are open sets of finite measure. Indeed, by Theorem 1.4, for any $\epsilon>0$ we can find unions of almost disjoint rectangles $A_\epsilon$ and $B_\epsilon$, such that $A_\epsilon \subset A, B_\epsilon \subset B$, with $m(A) \leq m\left(A_\epsilon\right)+\epsilon$ and $m(B) \leq m\left(B_\epsilon\right)+\epsilon$. Since $A+B \supset A_\epsilon+B_\epsilon$, the inequality (8) for $A_\epsilon$ and $B_\epsilon$ and a passage to a limit gives the desired result. From this, we can pass to the case where $A$ and $B$ are arbitrary compact sets, by noting first that $A+B$ is then compact, and that if we define $A^\epsilon=\{x: d(x, A)<\epsilon\}$, then $A^\epsilon$ are open, and $A^\epsilon \searrow A$ as $\epsilon \rightarrow$ 0 . With similar definitions for $B^\epsilon$ and $(A+B)^\epsilon$, we observe also that $A+B \subset A^\epsilon+B^\epsilon \subset(A+B)^{2 \epsilon}$. Hence, letting $\epsilon \rightarrow 0$, we see that (8) for $A^\epsilon$ and $B^\epsilon$ implies the desired result for $A$ and $B$. The general case, in which we assume that $A, B$, and $A+B$ are measurable, then follows by approximating $A$ and $B$ from inside by compact sets, as in (iii) of Theorem 3.4. |
|