Forgot password?
 Create new account
View 2111|Reply 15

[几何] 两点集中点点集面积

[Copy link]

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

hjfmhh Posted at 2015-10-22 09:04:38 |Read mode

65

Threads

414

Posts

3556

Credits

Credits
3556

Show all posts

Tesla35 Posted at 2015-10-22 10:53:33
经过几何画板画图发现应该是个圆角正方形
QQ截图20151022105138.png
当然只用了边界上的点。生成内部的点不会画

210

Threads

954

Posts

6247

Credits

Credits
6247

Show all posts

敬畏数学 Posted at 2015-10-22 12:36:19
可以求出M的轨迹,可以得到一系列的圆或圆心(5/2,3/2)。
将M的图像的圆心平移到原点,可得一系列圆的包络线,四个角上的圆,分别取:
圆心(1/2,1/2),r=1/2 ;(1/2,-1/2),r=1/2;  
(-1/2,1/2),r=1/2; (-1/2,-1/2),r=1/2,                                       
面积:1*1+1*1/2*4+π*1/4=3+π/4。

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2015-10-22 14:33:28
QQ截图20151022143238.png
画图没什么难度,有木有银写个严格的代数证明?

178

Threads

236

Posts

2629

Credits

Credits
2629

Show all posts

 Author| hjfmhh Posted at 2015-10-22 19:10:00
回复 4# kuing ~9}E4~RVN(T1EB%)$HG49EY.png

4

Threads

31

Posts

192

Credits

Credits
192

Show all posts

三尺水 Posted at 2016-5-29 20:26:18
楼上的都太菜了,结果是1+pi/4+ln(3+2*根号2)=3.54815

7

Threads

578

Posts

3956

Credits

Credits
3956

Show all posts

游客 Posted at 2016-5-30 09:53:37
回复 5# hjfmhh


    OK

4

Threads

31

Posts

192

Credits

Credits
192

Show all posts

三尺水 Posted at 2016-5-31 09:59:21
真理在六楼

32

Threads

42

Posts

405

Credits

Credits
405

Show all posts

longma Posted at 2016-5-31 16:41:29
5楼的是常规思路,正确!

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-3-21 15:14:15
今天网友问的一题:
鄂S爱好者 (8606*****):
QQ图片20200321150322.jpg

先画出点集 `B` 的图形如下:
QQ截图20200321150625.png
是一个 `3`, `4`, `5` 的直角三角形接一个半圆,显然 `B` 的面积为 `S_B=6+2\pi`,`B` 的周长为 `C_B=8+2\pi`。
而点集 `A` 是一个半径为 `r=1` 的圆饼,那么点集 `Q` 就是 `B` 再往外长,长成如下图所示:
QQ截图20200321151825.png
整个面积就是 `S_Q=S_B+C_B\cdot r+\pi r^2=14+5\pi`。

14

Threads

51

Posts

463

Credits

Credits
463

Show all posts

TTAANN001 Posted at 2020-3-21 15:21:25
回复 10# kuing

700

Threads

110K

Posts

910K

Credits

Credits
94172
QQ

Show all posts

kuing Posted at 2020-3-21 15:55:47
Last edited by hbghlyj at 2025-3-8 04:59:51回复 10# kuing

另附个 tikz 代码:

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-4 03:10:57

Minkowski Sums/Differences

Last edited by hbghlyj at 2025-3-8 05:00:38A Strange But Elegant Approach to a Surprisingly Hard Problem (GJK Algorithm)
用ClipChamp截取时间轴和裁剪画面和分离音频得到2744KB的MP4再转换为WebM文件大小为706KB
旁白说话很清楚: (从4:12开始)
A Minkowski sum is a simple idea.
We take every possible point in one shape add it to every possible point in another shape and the resulting shape is the Minkowski sum.
Mathematically we are basically treating every point on each shape as a vector from the origin and then adding every pair of vectors to get a new set of points.
A few of these vector sums will define the boundary of the new shape.
Another nice way to visualize what we're doing here is we're basically sweeping one shape over another, resulting in a dilation between the two shapes
.
Because of the addition offsets from the origin do matter, and you will see it in the result for the gjk algorithm what we actually care about is the Minkowski difference, which is just a Minkowski sum where we negate all the points of one shape. So while I will be referring to the subtraction of two shapes as a Minkowski difference know that internally it's really just a Minkowski sum.
蓝色文字为下方截取的视频时长:
https://kuing.cjhb.site/forum.php?mod=attachment&aid=MTQyOTd8NDJmMGM4NmFjNGI4MTA4MmQ5NzMyMzFmNjNkZTAyZWZ8MTc0NTIxNzI3OQ%3D%3D&request=yes&_f=.webm

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-4 04:00:58
longma 发表于 2016-5-31 09:41
5楼的是常规思路,正确!
三尺水 发表于 2016-5-29 13:26
楼上的都太菜了,结果是1+pi/4+ln(3+2*根号2)=3.54815
3#5#的$3+\fracπ4$是正确的吧?
6#的$1+\frac\pi4+\ln(3+2\sqrt2)$是错的吧?

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-4 04:08:50
kuing 发表于 2020-3-21 08:14
整个面积就是 `S_Q=S_B+C_B\cdot r+\pi r^2=14+5\pi`。
可以用Brunn-Minkowski不等式作验证:
$m(A+B)^{1/2}-m(A)^{1/2}-m(B)^{1/2}=\sqrt{14+5\pi}-\sqrt\pi-\sqrt{6+2\pi}=0.173309791466>0$✅

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-5-4 04:12:10
hjfmhh 发表于 2015-10-22 12:10
回复 4# kuing
即点集M就是大家画的,其面积为$3+\frac\pi4$
longma 发表于 2016-5-31 09:41
5楼的是常规思路,正确!
可以用Brunn-Minkowski不等式作验证:
$\sqrt{4(3+\frac\pi4)}-\sqrt{\pi}-\sqrt{4}=0.1187660932238>0$✅
三尺水 发表于 2016-5-29 13:26
楼上的都太菜了,结果是1+pi/4+ln(3+2*根号2)=3.54815

可以用Brunn-Minkowski不等式作验证:
$m(A+B)^{1/2}-m(A)^{1/2}-m(B)^{1/2}=\sqrt{4(1+\frac\pi4+\ln(3+2\sqrt2))}-\sqrt{\pi}-\sqrt{4}=-0.005<0$❌
所以6#算错了

手机版Mobile version|Leisure Math Forum

2025-4-21 14:34 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list