Forgot password?
 Create new account
View 2126|Reply 18

求和$\sum\arctan (2/n^2)$

[Copy link]

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

isee Posted at 2017-10-10 16:46:39 |Read mode
求和$$\sum_{n=1}^\infty\arctan \left(\frac 2{n^2}\right).$$

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-10-10 16:58:45
这个应该放到高等数学版块吧?

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-10-10 16:59:29
回复 2# zhcosin


    被你看穿了,不过,就像导数一样,也能玩吧。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-10-10 17:01:24
这个应该放到高等数学版块吧?
zhcosin 发表于 2017-10-10 16:58
如果改成这样$$\tan\left(\sum_{n=1}^\infty\arctan \frac 1{n^2}\right).$$

怕就只能放高数版了

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-10-10 17:17:03
回复 1# isee

这个简单吧,用公式$\arctan(\frac{2}{n^2})=\arctan(n+1)-\arctan(n-1)$,一化简就出来了。结果是$2\cdot\frac{\pi}{2}-\frac{\pi}{4}-0=\frac{3\pi}{4}$

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-10-10 17:26:26
回复 5# abababa


    被你秒了,赞呢!追问,4楼呢?

51

Threads

404

Posts

2896

Credits

Credits
2896
QQ

Show all posts

zhcosin Posted at 2017-10-10 17:28:53
回复 5# abababa
Niubility.

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-10-10 17:36:57
回复 6# isee

4楼的我不会,用软件算了一下,结果形式也挺复杂的。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-11-3 16:31:48
回复  isee

4楼的我不会,用软件算了一下,结果形式也挺复杂的。
abababa 发表于 2017-10-10 17:36
4#的答案
tan-sum.jpg

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-11-6 16:00:54
arc是什么函数?就是第一个等号后面求和那里的。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-11-6 22:29:35
回复 10# abababa


    哎呀,我擦,估计又是书上的一个书写错误。。。。。。

801

Threads

4888

Posts

310K

Credits

Credits
36170

Show all posts

 Author| isee Posted at 2017-11-7 12:51:49
arc是什么函数?就是第一个等号后面求和那里的。
abababa 发表于 2017-11-6 16:00
后面是复数,arc 应该是 arg

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2017-11-8 10:20:15
回复 12# isee

arg也看不懂这个过程,实在是弄不清楚。不过用软件算确实结果是那个。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2018-4-30 20:52:57
回复 9# isee

这个从$\arg\left(\dfrac{\sinh(\frac{\pi(1+i)}{\sqrt{2}})}{\frac{\pi(1+i)}{\sqrt{2}}}\right)$向下化简的那步,具体过程是什么样的?

1

Threads

153

Posts

1088

Credits

Credits
1088

Show all posts

Infinity Posted at 2018-5-1 14:54:17
根据双曲三角函数和角公式 $\sinh\frac{\pi+\pi \mathrm i}{\sqrt{2}}=\sinh\frac{\pi}{\sqrt{2}}\cos\frac{\pi}{\sqrt{2}}+\mathrm{i}\cosh \frac{\pi}{\sqrt{2}}\sin \frac{\pi}{\sqrt{2}}$
接下来将分母实数化,然后整理为实部和虚部形式就得到最后结果了。

不过无穷乘积化为双曲三角函数那一步,最好给出证明。

418

Threads

1628

Posts

110K

Credits

Credits
11891

Show all posts

abababa Posted at 2018-5-1 16:38:34
回复 15# Infinity

谢谢,我明白了,我直接用复数之商的辐角等于两辐角之差来算的,首先就把$\arg\frac{1}{\frac{\pi(1+i)}{\sqrt{2}}}$变成了$-\frac{\pi}{4}$,难怪算不出那种形式。

462

Threads

969

Posts

9934

Credits

Credits
9934

Show all posts

青青子衿 Posted at 2019-3-5 18:27:41
回复 5# abababa
mark一下
Source: Iberoamerican Olympiad for University Students 2012 - Problem 4
$$\sum_{n=0}^{\infty}\arctan\left(\frac{1}{1+n+n^2}\right)\text{.}$$
artofproblemsolving.com/community/c7h1148125p5421623

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-8-14 00:01:17

抄录

\begin{aligned}
\tan \left(\sum_{n=1}^{\infty} \arctan \frac{1}{n^2}\right)&=\tan \left(\sum_{n=1}^{\infty} \arg\left(1+\frac{i}{n^2}\right)\right)\\
&=\tan \left(\arg\left(\prod_{n=1}^{\infty}\left(1+\frac{\left(\frac{\pi(1+i)}{\sqrt{2}}\right)^2}{n^2 \pi^2}\right)\right)\right)\\
&=\tan \left(\arg\left(\frac{\operatorname{sh}\left(\frac{\pi(1+i)}{\sqrt{2}}\right)}{\frac{\pi(1+i)}{\sqrt{2}}}\right)\right)\\
&=\tan \left(\arctan \left(\frac{\tan \frac{\pi}{\sqrt{2}}-\operatorname{th} \frac{\pi}{\sqrt{2}}}{\tan \frac{\pi}{\sqrt{2}}+\operatorname{th} \frac{\pi}{\sqrt{2}}}\right)\right)\\
&=\frac{\tan \frac{\pi}{\sqrt{2}}-\operatorname{th} \frac{\pi}{\sqrt{2}}}{\tan \frac{\pi}{\sqrt{2}}+\operatorname{th} \frac{\pi}{\sqrt{2}}}
\end{aligned}

3151

Threads

8498

Posts

610K

Credits

Credits
66208
QQ

Show all posts

hbghlyj Posted at 2023-8-14 00:11:44
Last edited by hbghlyj at 2023-8-14 00:32:00
Infinity 发表于 2018-5-1 14:54
不过无穷乘积化为双曲三角函数那一步,最好给出证明。

Euler's sine product formula
\[\sin x=x \prod_{k=1}^{\infty}\left(1-\frac{x^2}{k^2 \pi^2}\right)\]
代入$ix$
\[\sinh x=x \prod_{k=1}^{\infty}\left(1+\frac{x^2}{k^2 \pi^2}\right)\]
代入$x=\frac{\pi(1+i)}{\sqrt2}$
\[\frac{\sinh\frac{\pi(1+i)}{\sqrt2}}{\frac{\pi(1+i)}{\sqrt2}}=\prod_{k=1}^{\infty}\left(1+\frac{\left(\frac{\pi(1+i)}{\sqrt2}\right)^2}{k^2 \pi^2}\right)\]

手机版Mobile version|Leisure Math Forum

2025-4-21 14:21 GMT+8

Powered by Discuz!

× Quick Reply To Top Return to the list